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Abstract—In industry, software testing and coverage-based
metrics are the predominant techniques to check correctness of
software. This paper addresses automatic unit test generation
for programs written in C/C++. The main idea is to improve the
coverage obtained by feedback-directed random test generation
methods, by utilizing concolic execution on the generated test
drivers. Furthermore, for programs with numeric computations,
we employ non-linear solvers in a lazy manner to generate
new test inputs. These techniques significantly improve the
coverage provided by a feedback-directed random unit testing
framework, while retaining the benefits of full automation. We
have implemented these techniques in a prototype platform, and
describe promising experimental results on a number of C/C++
open source benchmarks.

I. INTRODUCTION

Given the omnipresence of software in today’s society, there
is a great need to develop technologies that target effective ver-
ification technologies for software. In industry, software testing
and coverage-based metrics are the predominant techniques to
check correctness of software systems. This paper addresses
automatic unit test generation for programs under analysis, in
particular for programs written in C/C++.

In the past decade, there has been strong interest in develop-
ing practical techniques to generate tests that increase software
coverage or discover faults that were previously hidden. These
techniques often require the user to mark certain variables
as test inputs, followed by an exploration of the related
input space. Techniques such as random search or concolic
execution [1], [2], [3] are often used to explore as many paths
as possible based on these input variables.

On the other hand, there has also been progress on com-
pletely automated random test generation, e.g. the tool RAN-
DOOP automatically generates test drivers for Java programs
without user intervention [4]. Users of such tools include de-
velopers, quality assurance (QA) professionals, and acceptance
testers of outsourced projects. An automated test generation
approach has many benefits: it requires no input from the user,
it does not require a deep understanding of the code, and it
does not require manipulations of the code. RANDOOP is also
well-suited to the needs of object-oriented programs.

RANDOOP relies on feedback-guided test drivers with ran-
domly chosen values for test inputs. The most relevant feed-
back that RANDOOP considers is whether a test executes suc-
cessfully. That is, RANDOOP classifies a randomly generated
test driver by its execution behavior: If it executes without

causing a visible failure, it is collected in a set that is used
to generate other test drivers in the future. However, if it
causes a failure (segmentation fault, assertion violation, thrown
exception, ...), then we call such a test driver a crash driver.
Note that crash drivers can indicate a real bug in the program,
or they may violate some documented (or undocumented)
object protocol thereby causing an expected program crash
(not due to a bug in the program). These crash drivers are
collected and presented to the user for further investigation.

Although directed-random test driver generation, such as
implemented in RANDOOP, is generally very effective in the
early stages of testing, it often reaches a coverage plateau [4].
It may not cover deep object interactions or deep branches
using random methods and random test inputs. Another prac-
tical issue is that currently RANDOOP does not handle C/C++
programs. Due to the wide prevalence of C/C++ in industry,
and the inherent semantic complexity of marrying powerful
object-oriented abstraction mechanisms with potential low-
level memory and performance optimizations, there is a stark
need in industry for automated test generation for C/C++.

This paper follows the guiding principle of RANDOOP to
generate test drivers without user intervention and without the
user having to mark variables as test inputs. We propose a flex-
ible testing framework that switches between directed-random
search and concolic execution to automatically cover hard-to-
reach portions of the program. We further improve concolic
execution in this framework, by utilizing the unsatisfiable cores
generated by SMT solvers to learn infeasible paths among
related test cases. For programs with numeric computations,
we selectively invoke non-linear constraint solvers when lin-
earization of path queries contributes to infeasibility.

II. OVERVIEW OF OUR APPROACH

We highlight the main components of our test generation
framework in the algorithm shown in Figure 1. At the top
level, we choose a test method by tracking the increase in
coverage over time. We start with directed-random testing, à
la RANDOOP, as described below. When it reaches a coverage
plateau [4], we switch to concolic execution to cover new
program regions. We use various parameters to control the
effort spent, and can tune them to switch between the testing
methods.

Directed-random test generation. We initiate our over-
all approach by creating unit tests in a manner similar to
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Input: a set of C++ classes, associated contracts (if available),
and a time-limit

Output: (TN , TX , TR), where TN , TX and TR are sets of test
drivers

1: TN , TX , TR, CS := ∅ /∗ CS : conflict sequences ∗/
2: while time-limit not reached do
3: if choose test method=directed-random then
4: m := choose target method
5: t := extend-sequences (TN , TX ,m)
6: else /∗ use concolic execution ∗/
7: b := choose target branch
8: τ :=choose test driver(TN , TX , b, CS)
9: τS := symbolize (τ)

10: (status, s, c) := concolic-execution (τs, b)
11: if status = SAT then /∗ s contains solution ∗/
12: t := instantiate τS with s
13: else /∗ UNSAT, c: unsatisfiable core ∗/
14: if c is numerically symbolic then
15: CS := CS∪ conflict-sequence(c)
16: else /∗ try ICP ∗/
17: I := concolic-icp-execution (τs, b)

/∗ I: set of solution boxes ∗/
18: if I = ∅ then /∗ ICP is UNSAT ∗/
19: CS := CS∪ executed path (τs, b)
20: repeat /∗ sample from solution boxes in I ∗/
21: if need sampling in ICP solution boxes then
22: i := randomly sample from boxes in I
23: t := instantiate τS with i
24: execute t and update sets TN , TX , TR as needed
25: until sampling not needed or new test found or

enough samples tried
Fig. 1. Algorithm for test generation framework

RANDOOP [4] (lines 4–5). A unit test typically consists of a
sequence of method calls creating and mutating objects. These
tests are built iteratively by choosing previously successfully
executed tests, and combining them to form longer sequences
targeting a particular method call [4]. The generated tests may
also contain random values that are chosen for certain parame-
ters of interest, such as parameters of type int. The generated
test cases are then executed and automatically classified into
one of the following three categories (line 24):

1) A set of test drivers TR that cause a program runtime
error, such as segmentation faults or assertion violations;

2) a set of test drivers TX that end in uncaught exceptions
at runtime; and

3) a set of test drivers TN that exhibit normal runtime
behavior, in that the driver does not match the description
of the other categories.

The test drivers in the last category are regarded as normal
because they have not exhibited any irregular behavior as yet.
Implicit invariants of the program under analysis that may
be violated but have not been explicitly checked (through
embedded assertions, for example) are not tracked in the
completely automated setup. The union of the sets TR and
TX represents the crash drivers.

While deciding on the target method (line 4 of the algorithm
shown in Figure 1), we bias our choice towards methods
that have more unexplored branches. To do so, we maintain
coverage metrics for each method. Once the target method is
decided, its receiver object and its arguments are instantiated
from previously executed unit tests. Method arguments of
primitive types, like integers or floats, are instantiated with
random values.

Concolic execution. Directed-random test generation often
reaches a coverage plateau, which we wish to overcome utiliz-
ing concolic execution. Concolic execution improves upon the
classical symbolic execution by partially substituting concrete
execution values in cases where complex symbolic expressions
arise or a symbolic expression becomes too coarse (such as
calls to unknown functions). For any new input generated by
concolic execution, we utilize the same classification of test
drivers and add the so created tests to the set already found.
After enough additional tests have been created, we return to
the directed-random test generation method in the hope that
it may extend the newly discovered tests even further. When
initiating a concolic execution step, the main questions are:
• What is the coverage target?
• Which concolic execution should we consider?

To help make these selections, we maintain information on
prior tests. We first select an uncovered branch as target
(line 7). Next, with the help of prior runs, we choose a
subset of current test drivers that are good candidates to reach
the target branch (line 8). These test drivers contain certain
parameters that are chosen randomly. We turn these randomly
chosen values into symbolic variables (line 9), thereby yielding
a concolic execution, which is then used to formulate an SMT
problem to search for new input values. (This is similar to the
argument transformation step in Evacon [5].)

More specifically, based on the concolic instrumentation, we
create a path formula with a target branch check, for which the
SMT solver may find a new input that can lead us to take that
branch (line 10). If the SMT solver returns a value that satisfies
the formula, we execute the newly generated test driver. Then,
we add it to one of the three categories of test drivers, based
on the execution outcome of the new test (line 24). However, if
the SMT solver returns unsatisfiable, then there is no possible
value for the symbolic variables that will let us reach the target
branch, given the current instrumented concolic path.

Unsatisfiable core analysis in concolic execution. Note
that the concolic instrumentation may restrict some program
variables to be concrete. In particular, we are interested in con-
cretization of non-linear arithmetic statements. In such cases,
when the SMT solver returns an unsatisfiable core, we analyze
the core to determine whether it contains only those parts
of the execution trace that were numerically symbolic, i.e.
without partial concretization (line 14). In such a case, we can
use the unsatisfiable core in the future. In particular, it allows
us to quickly decide which test driver cannot be extended to
hit a target branch based on prior such unsatisfiable answers.

On the other hand, if the unsatisfiable core contains el-
ements of partial concretizations, the target branch may be
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reachable by using the same path but with a different in-
put. The test drivers generated by RANDOOP contain many
different concrete heap object “shape relationships”. In this
work, we use these concrete shape relationships but focus
on partial concretizations due to non-linear computations. To
decide whether it is infeasible to execute the target branch
on the current path, we consult solvers that handle non-
linear arithmetic. We use two different solving frameworks:
CORAL [6] and interval constraint propagation (ICP). Note
that CORAL has recently integrated ICP internally as well [7].

In Figure 1 we only show the use of ICP (line 17), since it
requires some adaptation of the flow. Should ICP report that
the path is unsatisfiable, we remember this information for
future use. Often, however, ICP returns possible solutions for
the input variables. While concolic execution queries resolved
by SMT solvers (including CORAL) return one input vector,
ICP returns sound candidate solution boxes. However, some
solutions may not generate executions that reach the target
branch. Hence, we randomly sample within the solution boxes
to find inputs for new test runs (line 22). If an input results in
an execution that reaches our target branch, we store the test
driver in one of the three categories and continue (line 24).

This approach allows us to find tests for programs with com-
plex non-linear arithmetic, which is usually not handled well
by directed-random test driver generators such as RANDOOP.
Note, that recently the symbolic execution engine of Java
PathFinder (JPF) [8] was extended to handle complex, non-
linear mathematical constraints using CORAL. As discussed
above, we try to limit the calls to the non-linear solver to
avoid high cost. We follow the concolic execution approach
of favorizing linear path queries, and only call the non-linear
solver if partial concretization was found using a light-weight
unsatisfiable core analysis. Since JPF is generally applied to
embedded software such as from the aerospace domain, it may
be appropriate to always query more complex solvers. In our
setting, where we generate tests for arbitrary domains, we
show that a two-stage approach delaying calls to non-linear
solvers has the potential to improve performance.

Handling of C/C++. The C/C++ programming language
provides convenient abstraction and data encapsulation mecha-
nisms for software developers. Such mechanisms include func-
tion and operator overloading, constructors and destructors,
multiple class inheritance, dynamic virtual-function dispatch,
templates, exceptions (where function specifications of thrown
exceptions are discouraged), functors, and standard libraries
such as STL and BOOST. However, these features also compli-
cate analysis and testing of programs. Furthermore, due to the
intrinsic complexity of mixing object-oriented programming
on top of full-fledged C code, there is a need in industry to
automate test generation for C/C++.

We have implemented the proposed test generation approach
using CILpp, which is an in-house C/C++ infrastructure based
on CiL [9]. CILpp models all aspects of C++ including
templates, multiple inheritance [10], exceptions [11], C++
strings [12], etc. In contrast to other languages that RANDOOP
has been applied to before, C/C++ also allows low-level

memory constructs that do not follow a clean lifetime cycle
such as construction, use/modification, and destruction. For
example, it is common for large C/C++ projects to contain both
complicated class hierarchies, as well as C structures/records
called structs. For the initialization of such structures, we
capture two common programming initialization idioms:

1) Record creation methods that allocate memory and initial-
ize it appropriately, and pass the created memory region
as the return pointer value back to the calling context. As
an example, consider the file operation method fopen.
This can be viewed as a constructor method for C records,
and is thus easily adapted in the C/C++ framework.

2) Another common idiom is to have initialization methods
that assume that memory allocation is handled separately.
While this is possible in C++ class hierarchies, it is
relatively uncommon. However, this is quite common in C
programs, and we had to adapt RANDOOP to handle these
cases. Figure 2 showcases a well-formed automatically
generated object initializer for one of our evaluation
benchmarks discussed in Section VII.

One additional complexity due to the low-level mem-
ory management capabilities of C is that we often
need to account for correlations between method param-
eters that relate the length of a buffer to an associ-
ated pointer. A well known example is in the handling
of C strings, for example for methods like strncpy.

board_t board;
memset(&board,0,

sizeof(board_t));
board_start(&board);

Fig. 2. A generated initializa-
tion sequence for variables of type
board_t in gnuchess

Finally, since RANDOOP was
initially developed for the man-
aged programming language
Java, we need to significantly
adapt the test generation pro-
cedure for a language such as
C/C++ that also allows low-
level memory manipulations.
For example, buffer overruns in Java are automatically caught
and an appropriate exception is thrown. Similarly, the Java
garbage collector removes the need to deallocate memory.
However, we are also interested in capturing such bugs.
Therefore, we use the dynamic checking tool Valgrind [13].
Note that the generated test drivers tend to be relatively small
with negligible runtimes. We omit further details about the
handling of C/C++ features for the sake of brevity.

Contributions. The major contributions of this paper are:

p We propose a flexible testing framework that supports
directed random unit test generation and concolic execu-
tion to target improved coverage. The concolic executor is
applied on a test driver chosen from a pool of previously
generated deemed “good” and extensible test drivers.

p We propose use of a light-weight unsatisfiable core
analysis in case a path formula to a target branch is
not satisfiable. This decides whether concretizations of
arithmetic computations are relevant, or learns a conflict
sequence for the path for future use. If the light-weight
unsatisfiable core analysis finds that partial concretiza-
tions of the arithmetic computations contributed to the
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class Base {
Base();
Base *foo(int i);
...

}

class Derived :
public Base {
Derived(int i);
void bar(Base &b);
...

}

Fig. 3. Small source code snippet representing classes under test

Base b0(); Derived d0(1);
Derived d0(1);
Base *b1=d0.foo(0);

Fig. 4. Sequences worth extending generated by RANDOOP

unsatisfiability, we propose to use non-linear solvers
lazily to find solutions.

p Finally, we have implemented the techniques in a fully
automated unit test generation tool, that handles programs
written in C/C++. The tool handles all complex semanti-
cal features of C/C++, including exceptions and multiple
inheritance, using our in-house CILpp framework [10].
We present experimental evidence and an evaluation of
our approach showing promising results.

III. BACKGROUND

A. Feedback-Directed Random Unit Test Generation
We initiate our overall test generation method by creating

tests in a manner similar to RANDOOP [4]. An object-oriented
test typically consists of a sequence of methods calls creating
and mutating objects, followed by some kind of consistency
check. These tests are built iteratively by choosing previously
successfully executed tests, and combining them to form
longer sequences targeting a particular method call [4]. We
use the code snippet in Figure 3 to illustrate this process.

RANDOOP randomly chooses methods to target, and sup-
plies formal arguments for parameters based on previously
created sequences, that are deemed to be “worth extending”. A
sequence is deemed worth extending, if it has not yet produced
a runtime violation. Traces that produce runtime violations are
collected separately as evidence of potential bugs.

To create an executable test driver from a sequence, it is
placed into a main function. Test drivers may be terminated
using sanity checks. The sequences produced by RANDOOP
generate formal arguments to match the corresponding API
chosen as a target. When parameters of primitive type are
needed, it generates random inputs of the correct type, as
shown in Figure 4 for int arguments.

In order to extend a sequence, RANDOOP chooses a new
target function to call. Suppose that we are interested in gen-
erating a call to Derived::bar. Four possible extensions
from the set shown in Figure 4 are shown in Figure 5. Note
that the third generated sequence may fail in the test driver,
due to variable b1 potentially being NULL. The most useful
feedback that RANDOOP utilizes is the distinction whether a
test case is deemed worth extending.

B. Concolic Execution
Let P be a program over variables X = {x1, · · · , xm} and

let its CFG be represented as Π = (X,N,E, no, ne) where

Base b0() ;
Derived d0(1);
d0.bar(b0);

Derived d0(1);
d0.bar(d0);

Derived d0(1);
Base *b1 =

d0.foo(0);
d0.bar(*b1);

Derived d0(1);
Base *b1 =

d0.foo(0);
if (b1)

d0.bar(*b1);

Fig. 5. Four extended sequences generated by RANDOOP

N is the set of nodes, E ⊆ N × N is the set of edges and
no, ne ∈ N are unique entry and exit nodes. The set E is a
disjoint union of edges Ea and Ec labeled with assignment
and conditional statements. Let Exp : Exp op Exp | X ,
op = {+,−,×} represent the grammar of expressions over
X . We assume assignments are of the form sa : xi ← e, e ∈
Exp and conditional statements have guards sc : e ∼ 0, for
∼= {<,≤, >,≥,=, 6=}. For simplicity, we assume that the
program does not have pointers, arrays or heap manipulation.
Note, however, that our implementation handles these features.

Let π : no, n1, · · · , nk, ne be a path of the CFG. Concolic
execution is used to obtain a logical constraint ϕ on initial
values of variables X such that the program execution is
forced along the desired path π. To accomplish this, the
program is instrumented to track the constraints as it executes.
Specifically, for a path prefix πi : no, n1, · · · , ni of π, the
instrumentation code tracks (ϕi, Fi) where ϕi represents the
path constraint computed for πi and Fi : X → Exp represents
a map from variables xi to their current values expressed as a
symbolic expression over the initial values of X . The map Fi

is extended to expressions over X in a natural way. To begin
with ϕ0 = true and F0(xi) = xi for all xi ∈ X . For each
statement edge ni−1 → ni, the state (ϕi−1, Fi−1) is updated
to (ϕi, Fi) as follows:
• Assignment: Consider the assignment statement sa :
xi ← e. The instrumentation updates the symbolic
information (ϕ, F )

sa−→ (ϕ, F ′) where F ′ is:

F ′(xj) =

{
e[F (x1)/x1, · · · , F (xm)/xm] j = i
F (xj) j 6= i.

• Condition: For a condition sc : e ∼ 0, we update the
symbolic information (ϕ, F )

sc−→ (ϕ′, F ) where

ϕ′ = ϕ ∧ ϕi, ϕi = (F (e) ∼ 0).

The generated constraint ϕi typically contains only linear
arithmetic by concretizing non-linear expressions; i.e., if there
is any non-linear expression, symbolic expressions F (xi)
corresponding to the relevant variables are substituted by their
concrete values observed during the actual concrete execution.
Concretization is also used to approximate other program
features, such as return values of external function calls. The
constraint ϕi thus under-approximates the input values for
variables X that force execution along path prefix πi.

IV. INTEGRATION OF TEST GENERATION METHODS

Directed random test generators allow automatic generation
of tests for object-oriented programs. However, once this
approach saturates, we use concolic techniques for increasing
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the structural coverage of the program under test. In this phase,
from the existing pool of test sequences, concolic execution
is used to explore uncovered program paths. After the con-
colic phase has run for some time, the new test sequences
thus generated are used to seed further directed random test
generation. Hence, we shift back and forth between random
test generation and concolic execution in a symbiotic manner.

For each conditional statement, we pair the then- and
else-branches of the if-block. For concolic execution we pick
a branch that has not been covered before, but whose other
branch in the pair has been covered by some test case. We
also restrict our search to branches whose guard on concolic
execution is symbolic. We use a simple dataflow analysis to
obtain an over-approximation of such symbolic branches.

int symbolic1 = 1 ;
havoc(&symbolic1) ;
Derived d0(symbolic1);
int symbolic2 = 0 ;
havoc(&symbolic2) ;
Base *b1 =
d0.foo(symbolic2) ;

Fig. 6. A symbolic test sequence

Given a target branch and
a test sequence, we use con-
colic execution to explore the
target. To do so, we inspect
all method invocations in the
test and automatically intro-
duce symbolic variables in
place of method arguments
with primitive types. Thus, we obtain a test sequence which is
symbolic in these inputs. As an example consider the symbolic
test sequence in Figure 6 obtained from the concrete test
of Figure 4. Test cases obtained by concolic execution are
added to the pool. After running concolic execution for a set
of targets, we switch back to randomized test generation to
iteratively generate longer test sequences, thereby providing
an amplification in coverage.

Example 4.1 (Coverage improvement): We observed a
marked improvement by combining concolic execution with
directed random test generation for certain benchmarks. A
snippet of a method Triangle::intersect is shown in
Figure 7. In the randomly generated test cases, the concrete
values for du0du1 and du0du2, computed at the lines
marked mult-1 and mult-2, were positive. Hence, the
test cases returned at the statement marked early-return.
Using concolic execution, inputs for a new test case were
generated such that du0du1 becomes negative, thus avoiding
the early-return statement and exploring the following
portion of the method. This single generated test extended the
branch coverage by 6.1% due to the sequence of branches
in the remainder of the execution. The generated test case
was then further extended by random test generation in a
follow-up iteration of our approach. This resulted in additional
7.5% branch coverage. Thus, by leveraging concolic execution
within the random test generation framework, these tests were
able to improve branch coverage by 13.6%. ut

V. UNSATISFIABLE CORES IN CONCOLIC EXECUTIONS

Tests generated using concolic execution have the same code
structure as their parent tests, but only differ in their inputs.
Any two tests generated from the same parent often share large
portions of their execution trace. When a path in a particular
test driver to a target branch is infeasible, we use unsatisfiable

bool Triangle::intersect(const Triangle &t)
{

...
du0=(N1[0]*U0[0]+N1[1]*U0[1]+N1[2]*U0[2])+d1;
du1=(N1[0]*U1[0]+N1[1]*U1[1]+N1[2]*U1[2])+d1;
du2=(N1[0]*U2[0]+N1[1]*U2[1]+N1[2]*U2[2])+d1;
if(fabs(du0)<0.000001) du0=0.0;
if(fabs(du1)<0.000001) du1=0.0;
if(fabs(du2)<0.000001) du2=0.0;
du0du1=du0*du1; /* mult-1 */
du0du2=du0*du2; /* mult-2 */
if(du0du1>0.0f && du0du2>0.0f)

return false; /* early-return */
...

Fig. 7. Code snippet from coldet showing use of concolic execution

cores to generalize the reason of infeasibility of the path.
These unsatisfiable cores can be used in the future to rule out
infeasible paths during concolic execution of related test cases.
As noted in [14], symbolic execution is many times slower
than executing a program. The use of unsatisfiable cores helps
by preventing redundant SMT queries.

A. Using Unsatisfiable Cores for Finding Conflict Sequences

We use the core of an unsatisfiable formula for extracting
structural reasons for the infeasibility of the corresponding
path. This is achieved by semantically annotating constraints
obtained in the concolic execution with a set of responsible
control flow edges. Let π be a path in the CFG Π =
(X,N,E, no, ne) chosen for concolic execution. We modify
the concolic execution described earlier to also track the CFG
edges in path π that contribute to each conjunct ϕi in the
constraint ϕ. Formally, apart from (ϕ :

∧
i∈I ϕi, F : X →

Exp), the result of concolic execution is augmented with maps
c : I → 2E and f : X → 2Ea . Here, c maps each conjunct
ϕi in ϕ to a set of contributing edges in π, and similarly f
maps each variable xi ∈ X to a set of assignment edges in π
which lead to its symbolic expression F (xi). The maps c and
f are updated as follows:
• Assignment: Consider the assignment edge ea labeled

with statement sa : xi ← e. The instrumentation updates
the symbolic information (ϕ, F, c, f)

sa−→ (ϕ, F ′, c, f ′)
where F ′ is the same as described earlier and

f ′(xj) =

{
{ea} ∪

⋃
xk∈e f(xk) j = i;

f(xj) j 6= i.

• Condition: Consider the edge ec with the guard sc :
e ∼ 0. The instrumentation code updates the symbolic
information (ϕ, F, c, f)

sc−→ (ϕ′, F, c′, f) where ϕ′ = ϕ∧
ϕi, ϕi = (F (e) ∼ 0) and

c′(j) =

{
{ec} ∪

⋃
xk∈ec f(xk) j = i;

c(j) j 6= i.

The augmented information (c, f) allows us to compute a
conflict sequence of edges by tracking the set of edges that
contribute to each conjunct in the path constraint ϕ.

Definition 5.1 (Conflict Sequence): Let (ϕ, F, c, f) be the
result of concolic execution of π and let ϕ be unsatisfiable
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float x=ext1();//assume x=1
float y=ext2();//assume y=1
float z = 0.0 ;
if ( y > 0.0 )
z=x*y; //concolic: z=1*y

assert(z>=0.0);//target

real x = *; //p1
real y = *; //p2
real z = 0; //p3
assume(y>0);//p4
z = y ; //p5
assert(z<0);//p6

Fig. 8. Light-weight infeasible core analysis: The infeasible core contains
the conjuncts p4, p5 and p6. The Boolean marking function ρ evaluates to
true for p5. Thus, we decide to invoke a non-linear solver.

with an unsatisfiable core given by index set I . The corre-
sponding conflict sequence C is the set of edges

⋃
i∈I c(ϕi),

contributing to the conjuncts in the unsatisfiable core, in the
order of appearance in π.

We use conflict sequences corresponding to an infeasible
path to avoid potentially expensive checks for other paths. A
conflict sequence C deduces the infeasibility of a program
path π, if C is a subsequence of the edges occurring in π.
Additionally, any variable that is read by an edge e ∈ C,
must not be defined by the edges in π not belonging to C;
i.e. the values flowing into the conflict edges C should be
defined by other edges in C or should be the initial values.
This latter check ensures that the edges in π which are not
in C do not interfere with the conflict sequence. We conclude
the infeasibility of π if there exists some compatible match
with a conflict sequence. Note that this way of avoiding SMT
queries is similar to the learning from proofs we used for static
analysis [15], but the specific analysis to derive the conflict
sequence is different here.

B. Light-Weight Infeasible Core Analysis

The process of matching paths with conflict sequences is
presented for a language without pointers, calls to external
functions, or non-linear computations. The concolic execution
of a statement outside this scope substitutes (a part of) the
symbolic expressions involved with concrete values. Due to
these concretizations, it is possible that a path π compatible
with a conflict sequence is actually feasible. So, we modify our
approach slightly: Given a test driver and an instantiation of its
symbolic inputs, if the program path π is infeasible, we obtain
the conflict sequence C corresponding to the unsatisfiable core
of the path constraint. If C does not contain any edge with
concretization, we store C. If, however, C contains an edge
with concretization due to linearization, the infeasibility of π
might be due to the particular concrete values used. In such a
case, we re-analyze the path using a non-linear solver.

In addition to the augmented information (c, f) discussed
before, we also add a Boolean marking ρ : I → {0, 1},
which tracks whether a conjunct ϕi is partially concretized
in its arithmetic computations. This is used to quickly decide
whether to try the non-linear solver for a less concretized path
formula. An example of this analysis is shown in Figure 8.

VI. ICP AND SYMBOLIC ARITHMETIC EXECUTION

ICP algorithms have been applied to various non-linear
computing problems involving thousands of variables and

constraints [16]. ICP differs from other numerical solution-
finding algorithms in the following reliability guarantees:
• ICP always terminates, returning either “unsatisfiable”,

or “satisfiable” with an interval over-approximation of a
solution (or the solution set).

• When ICP returns “unsatisfiable”, it is always correct.
• When ICP returns “satisfiable”, the solution may be

spurious; but its error is within a user-specified bound.
Given a set of real constraints and interval bounds on

their variables, ICP [17] successively refines an interval over-
approximation of its solution set by narrowing down the
possible value ranges for each variable. ICP either detects the
unsatisfiability of a constraint set when the interval assignment
on some variable is narrowed to the empty set, or returns inter-
val assignments for the variables that tightly overapproximate
the solution set, satisfying some preset precision requirement.

If the light-weight infeasible core analysis determines that
partial concretizations due to non-linear computations con-
tributed to the infeasibility, the target branch may be reach-
able using the same path. In this situation, we extend the
program instrumentation to generate a concolic execution that
concretizes heap objects but treats arithmetic computations as
fully symbolic, even if computations are non-linear.

On the non-linear path formula, ICP may still return the an-
swer unsatisfiable. Thus, lifting the partial concolic concretiza-
tion performed due to non-linear numerical computations is
not enough to generate test inputs that will reach the target
branch.1 Alternatively, ICP may return potential solution boxes
to the constraints at hand that are not feasible. By increasing
the precision requirement, that is, by allowing smaller maximal
errors, we can reduce the number of such cases.

real x=*,y=*,z=0;
assume(y>0) ;
z = x*y ;
assert(z<0) ;

Fig. 9. Non-linear path

When ICP returns candidate so-
lutions, we sample these to find test
inputs for new tests. Sampling of in-
terval solution boxes is cheap, since
we can sample each input variable
independently of other inputs. There are many known sam-
pling strategies with good coverage properties. We perform a
fixed-length sampling of the candidate solutions returned by
ICP. Should a test input result in a program execution that
reaches the target branch, we store the generated test driver.

Example 6.1: Figure 9 shows a concolic trace containing
non-linear arithmetic based on Figure 8. Recall that standard
concolic execution failed to find a test input in this case. ICP
however finds an input where x is negative and y positive. ut

Example 6.2 (Improved coverage due to ICP): In our
experiments, we observed that numerically symbolic execution
using ICP was successful in generating tests where directed
random test generation and standard concolic execution failed.
A code snippet of a method Box::intersect is shown
in Figure 10. The targeted condition is abs_cross[0] >
f is false, and thus control reaches the return false;

1Note that we currently use the ICP solver in an idealized arithmetic setting,
performing computations in the domain of reals. Prior work has shown how
to extend concolic execution to model floating-point computations [18], [19].
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bool Box::intersect(const Vector3D& O,
const Vector3D& D) {

...
Vector3D cross = CrossProduct(D,diff);
abs_cross[0]=flabs(cross[0]); /*abs. value*/
f = m_Size[1]*abs_segdir[2] +

m_Size[2]*abs_segdir[1];
if ( abs_cross[0] > f ) /* target-branch */

return false; /* target-block */

Fig. 10. Snippet from coldet showing use of ICP-enabled concolic
execution

statement. The numeric computation involves the comparison
of an absolute value of a cross product with the sum of two
multiplications. The concolic execution finds that the original
concolic trace is unsatisfiable. However, after relaxing the
constraint to keep the numerical computations symbolic, ICP
finds a solution box. Sampling the solution box finds a new
test input that allowed us to reach the target-block. ut

VII. EXPERIMENTS AND EVALUATION

We implemented the proposed approach in our in-house
C/C++ infrastructure called CILpp [10]. We adapted RAN-
DOOP [4] with respect to C++ semantics. For example, certain
Java requirements are not present in C++, e.g. equals
methods should be symmetric. C++ also has complexities due
to memory-safety issues, object lifetimes, and others – these
are handled by CILpp. We also lifted the concolic executor
CREST [20] to CILpp and allowed tracing of floating-point
operations. Finally, for non-linear queries, we integrated the
ICP solver RealPaver [21] and the meta-heuristic constraint
solver CORAL [6] into our framework. Experiments are per-
formed with a fixed time bound for each investigation strategy.

A. Experimental Setup

We performed an evaluation using various open-source
C/C++ projects. We pre-processed the source code and sim-
plified the control structure so that branch conditions are
atomic. Hence, the branch coverage that we present is akin
to condition/decision coverage on the original program. We
report results for the following projects: a red-black tree
implementation, a linked list implementation, a priority queue
implementation, coldet, a collision detection library used in
gaming, gnuchess, a computer chess program, ddrescue,
a data recovery tool, and tinyXML, a widely used XML
parser. We report the effective LOC (which includes relevant
header file instantiations) for the modules under test and the
number of functions, statements and branches for each project
in Table I. Note that gnuchess is divided into multiple
modules – thus, we split the benchmarks into two parts.

In the following, we investigate the following research
questions (RQ) in more detail:

1) Does concolic execution help our test generation frame-
work improve upon pure directed random testing?

2) Are non-linear solving techniques such as interval con-
straint propagation useful to increase coverage when
applied to feedback-directed generated test drivers?

TABLE I
STATISTICS ABOUT BENCHMARKS USED IN OUR STUDY

Benchmark Lang. ELOC # func # stmts # branches
tree C 1.6K 18 137 48
list C++ 1.5K 10 109 40
queue C++ 2.9k 18 296 102
coldet C++ 10.7K 118 2987 834

gnuchess1 C 29.3K 316 7291 2195
gnuchess2 C 40.2K 272 10022 3026
ddrescue C++ 19K 151 3549 1336
tinyxml C++ 13.4K 284 3950 1215

TABLE II
BRANCH COVERAGES FOR DIRECTED RANDOM TESTING (DR), CONCOLIC

EXECUTION (CE), AND THE COMBINED TEST FRAMEWORK (CTF)

Bench- Branch coverage CTF improvement over
mark DR % CE % CTF % DR CE
tree 92 90 92 0% 2%
list 43 43 43 0% 0%
queue 65 67 69 6% 3%
coldet 41 28 75 83% 170%
gnuchess1 28 25 31 9% 23%
gnuchess2 14 11 30 110% 166%
ddrescue 21 22 37 76% 70%
tinyxml 43 43 44 1% 2%

3) Is our combined framework able to discover previously
unknown bugs in C/C++ benchmarks?

4) Can our framework reveal new types of bugs previously
not handled by RANDOOP, such as memory leaks?

B. Improving Coverage over Directed Random Testing

First, we investigate RQ1. The experimental results are sum-
marized in Table II. The function level coverage is generally
the same between directed random and our approach since
we adopt the sequence extension mechanism from RANDOOP.
As previously observed, random testing generally performs
well for container classes [22]. However, for most other
benchmarks our approach generally dominates pure directed
random test generation and concolic execution in terms of
branch coverage. Note that the branch coverages on some
benchmarks seem low – this is largely due to the fact that
we did not provide mock environments for system calls,
that we did not provide local files that were required by
some methods, and that many of these benchmarks follow
a defensive programming style. For example, in gnuchess
parameters are checked for validity at every function entry -
even though the same checks have been performed previously
on the same path. Thus, many condition branches cannot be
reached (which we measure, as noted above).

We highlight our experimental results for one of the larger
benchmarks (coldet) in Figure 11. We present the coverage
results in terms of percentage of the complete code under
analysis. As can be seen, with the help of directed random
testing, we are able to quickly cover over 85% of all functions.
The test sequence generator only generates calls to public
methods, i.e. private methods need to be reached indirectly.

Figure 11 highlights the coverage improvement obtained
by our test generation, in particular with respect to branch
coverage. While pure directed random test generation reaches
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Fig. 11. Experimental results for our test generation framework for coldet: On the left, we show results of our RANDOOP implementation for branch,
function and statement coverage over time using dark blue, dashed red, and light green lines, respectively. The middle shows the corresponding coverage over
time for our combined framework. The graph on the right shows the difference between our combined framework and pure directed-random test generation
for branch and statement coverage using dark red and light pink, respectively.

TABLE III
EXPERIMENTS REGARDING NON-LINEAR SOLVER HEURISTICS

Benchmark LIA CORAL LIA+ICP LIA+CORAL
coldet 27% 20% 58% 75%

gnuchess1 24% 29% 25% 31%

a coverage plateau at about 45% of branches, our approach
generates tests that are able to cover over 70% of branches.
This clearly highlights the benefit of adding concolic execu-
tion. Our approach also covers around 9% more statements
than the tests generated using directed random testing only.
As can be seen from the branch coverage over time, there
are various points during test generation where intermediate
plateaus are reached. However, since we switch to concolic
execution early, these initial plateaus are quickly overcome
and subsequent spikes are noticeable. It is also interesting
that the tests may cover less branches and statements than
pure directed random based tests in the beginning. This is due
to the fact that we initiate concolic execution within some
function before other functions have been exercised (see the
dashed lines in Figure 11). The difference of called functions,
however, converges to zero quickly, where deeper intra-method
exploration using concolic execution shows its effectiveness.
Answer: The combination of concolic execution with random
directed testing successfully alleviates some of the drawbacks
of random directed testing alone.

C. Test Generation and Non-linear Path Queries

In this section we address RQ2, namely whether solving
non-linear path queries helps to increase test coverage of
general purpose programs. Table III highlights the coverage of
generated tests using four different strategies: LIA uses a state-
of-the-art linear integer arithmetic solver [23] only (without
trying to find solutions to non-linear queries), CORAL always
tries to answer queries using CORAL [6] without trying to first
perform a linearization of the path query, LIA+ICP, where
we use ICP to solve non-linear path queries after the initial
linearized path query was found to be unsatisfiable due to
partial concretization, and LIA+CORAL where we use CORAL
instead of ICP when trying to solve the non-linear path query.

Table III highlights a number of things: First, (linear)
concolic execution misses many reachable branches when
compared to the other strategies. Secondly, using full arith-
metic symbolic execution via CORAL tends to be expensive
thus not reaching many branches in coldet. As can be seen
especially in the column LIA+CORAL, performing a concolic

TABLE IV
FAILURE INVESTIGATION FOR gnuchess

Reason Unique Total
Likely bugs 9 37

Implicit protocol 2 20
Unexpected parameters 16 16

Total 27 73

analysis first, and lazily using more expensive queries has
clear benefits. In our experiments, LIA+CORAL also clearly
outperformed LIA+ICP. This is likely due to the fact that we
did not optimize the error precision parameter of ICP, using a
relatively large maximal error. This leads to fast query results,
but with large solution boxes and we limited the sampling of
these to too few samples.
Answer: Selective use of non-linear solvers to resolve com-
plex path queries can substantially increase code coverage of
feedback-directed generated test drivers.

D. Analysis of Test Drivers Leading to Failures

In this section we investigate RQ3, namely whether our
generated test drivers uncover serious bugs in C/C++ bench-
marks such as segmentation faults, for example. We report our
findings for some of the larger benchmarks.
gnuchess: Table IV shows the investigation result of crash

drivers generated for the gnuchess project. We investigated
73 generated test drivers leading to crashes, of which 37
were judged to be due to bugs in gnuchess that could
be resolved using 9 unique fixes. These bugs are mostly
potential NULL pointer accesses, where calling contexts do
not check for NULL pointer return values. The analysis also
revealed a potential infinite loop, as well as a buffer underflow.
In further 20 cases, we concluded that the test driver is
likely violating some implicitly assumed event ordering (called
implicit protocol in the table). Since the function call depth
between the function called by the test driver and the offending
program statement is quite large (about five in the two uniquely
identified cases), we believe that the code should be improved.
Finally, we found 16 test drivers that violated some assumed
precondition on parameters of a called method. For example,
in 13 cases, a NULL pointer was passed to functions, which
did not expect such an argument. In another case, a constant
string was passed to a function that tried to modify the string
- violating its expectation as well. Furthermore, in two cases
the test driver did not provide well-correlated parameters to
a called function. In one such case, a format string was
passed that included %s placeholders, but no additional string

139



Vector3D Normalized () const {
return (1.0f/Magnitude())*(*this);

}
Plane(const Vector3D& a, const Vector3D& b,

const Vector3D& c) {
normal=CrossProduct(b-a,c-a).Normalized();

Fig. 12. Code fragment of coldet

argument was given to match this format string. We believe
that for these 16 test drivers no source code fixes are needed.
coldet: We investigated a limited number of the gener-

ated crash drivers for the coldet benchmark. We found that
two default constructors in coldet (for class Triangle
and record Matrix3D) do not initialize member fields of the
so created objects, thus causing several issues in many test
drivers. These default constructors should either be declared
private instead of the current designation as public, or
should initialize member fields. We also found an instance of
undefined behavior in coldet caused by a bad cast from a
NaN (not-a-number floating-point value) to an integral type.
The NaN value was traced back to a well-defined floating-point
division-by-zero in the code fragment shown in Figure 12. The
test driver generated input vectors such that normalization is
performed on a 3-dimensional zero-vector, thus generating a
3-dimensional vector where each direction stored as a floating-
point becomes a NaN (note that Magnitude() on a zero-
vector returns zero). A variety of fixes can be designed – one
option would be to abort the Vector3D::Normalized()
call with an exception, when performed on a zero-vector.
tinyXML: We also analyzed a subset of the generated

crash drivers in tinyXML. We found a variety of bugs, in-
cluding a potential NULL pointer dereference in the TiXml-
Attribute::Next and TiXmlComment::Parse meth-
ods, a double-free (through two calls to the destructor) of an
object, if it is allocated on the stack, a stack overflow issue in
the destructor of TiXmlNode, and multiple infinite loops.
Answer: The analysis of the failure inducing test drivers for a
variety of benchmarks shows that our approach successfully
generates interesting bug-revealing tests.

E. Finding Memory Leaks using Generated Test Drivers

In this section we investigate RQ4. We automatically inves-
tigated nearly 600 generated test drivers that were deemed
as good test drivers worth extending for possible memory
leaks in coldet. In order to report memory leaks in the
benchmark only and not in the test driver, we need to de-
allocate any memory that was created in the test driver
using the various allocation methods such as new, new[],
malloc, etc. Thus, we alter the generated test drivers by
adding the appropriate de-allocation calls to the end of the
test driver in reverse order. Then, we investigated the test
drivers using Valgrind [13] and inspected the reported leaks.
We discovered two related memory leaks in the BoxTree-
InnerNode::createSons method, which overwrites two
allocated member fields without freeing the associated mem-
ory first. Note that the tool LEAKPOINT [24] could be used to
find the location of the bug automatically.

We also analyzed the test drivers for some other bench-
marks. However, the test drivers did not reveal memory
leaks in gnuchess, for example. The gnuchess program
assumes an a priori allocated chess board which is allocated
and de-allocated after its use in the test driver. No internal
allocations are made and thus no memory leak is possible
there. Test drivers for some other benchmarks did not reveal
additional memory leaks, either. We believe that the generated
tests may be missing some memory leaks, although we are
not certain of that fact. To increase the chance of finding
additional memory leaks we may need to add heuristics that
target paths with missing de-allocations or with overwriting
of previously allocated memory. Forcing repetitive calls to
methods that include allocations may also help, for example.

Answer: Our current test generation framework helps find a
limited number of memory leaks. However, some memory
leaks have possibly not been revealed. Future research poten-
tial exists in discovering appropriate search heuristics.

F. Threats to Validity

Threats to external validity. We evaluated our approach
for automated test generation of C/C++ programs for a variety
of benchmarks. However, we cannot guarantee that the set of
benchmark is representative of all domains. To mitigate this
limitation, we strived to include some that heavily rely on
arithmetic computations and others that do not.

Threats to internal validity. One internal validity threat
is the correctness of our implementation to generate test
drivers for C/C++. We rely on the correctness of our CILpp
framework for C/C++, which has been thoroughly tested and
is in production use for program analysis within NEC in a
tool called VARVEL [25]. We have also inspected the newly
developed code for correctness. Finally, we have tested the
implementation using Valgrind by comparing generated test
drivers with and without CILpp, and our code coverage
and symbolic execution instrumentation (simply relying on
standard g++ compilers) to eliminate bugs in the tool-chain.

Threats to construct validity. We used coverage metrics
on the program based on the executed test drivers to evaluate
the effectiveness of our approach. To mitigate the issue with
such threats, we used standard coverage metrics used in
related studies. Furthermore, we relied on the well-studied
CREST [20] tool to generate most of our coverage metrics and
believe that the reported numbers are accurate and adequate.

VIII. RELATED WORK

RANDOOP automatically generates unit tests for Java pro-
grams without user intervention [4]. In [26], static analysis
has been used to improve upon it. RANDOOP has recently
also been extended to test multithreaded code [27]. Concolic
execution for software testing was first proposed in [1], [2] and
subsequently used in many testing tools [3], [14], [28]. Recent
tools, such as KLEE [3], can generate tests fully automatically,
in limited circumstances, by allowing fuzzing over the input
arguments to the main function. More recently [29] provides
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an approach, alternate to concolic execution, for mixing sym-
bolic execution with concrete-symbolic solving.

For industrial-strength object-oriented programs though,
scalability is still a challenge in applying symbolic execution.
Apart from the early depth first search strategy in concolic
execution [1], other path exploration strategies have been
proposed, such as hybrid concolic search [30], random paths
search [20], generational search [14] and pruning the search
space using state comparison [31]. However, symbolic ex-
ecution is many times slower than executing the program.
Thus, many approaches analyze test cases for all possible
combinations of method sequences up to a bounded length
only. One way of mitigating the symbolic execution cost is to
distribute the test generation queries [32], [33], [34].

Recently, a number of approaches have been proposed that
combine concolic execution with other testing strategies. One
such method is hybrid concolic search [30] which combines
pure random test input generation with concolic execution
for user-marked input variables. More closely related to our
work is Evacon [5]. Evacon combines evolutionary testing
with concolic execution to achieve higher coverage of class
unit tests. In Evacon, generated tests are also automatically
symbolized, and presented to the concolic executor. How-
ever, as the experiments in [5] suggested, the evolutionary
testing approach is expensive when compared to RANDOOP.
RANDOOP was basically able to cover as many branches
as Evacon, except in one degenerate case. We believe that
the advantage of RANDOOP is that it easily scales to much
larger units of testing, as shown in [4]. Thus, we believe that
adding concolic execution to a RANDOOP-style test generation
is more favorable when compared to evolutionary methods.
Finally, note that Evacon [5] did not utilize the unsatisfiable
core for non-linear solvers to find relevant test inputs, when
the standard concolic executor fails.

IX. CONCLUSIONS

This paper presented a fully automatic approach for generat-
ing tests for object-oriented programs written in C/C++, using
a feedback-directed random testing with concolic execution
to overcome coverage plateaus. We also presented how an
unsatisfiable core analysis can be used to guide the automatic
test generation framework forward, and used non-linear solvers
lazily to find inputs on complex path queries. Finally, an
implementation of the approach has been presented, with
encouraging experimental results.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI. ACM, 2005, pp. 213–223.

[2] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in ESEC/SIGSOFT FSE. ACM, 2005, pp. 263–272.

[3] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI. USENIX Association, 2008.

[4] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in ICSE. IEEE Computer Society, 2007.

[5] K. Inkumsah and T. Xie, “Improving structural testing of object-oriented
programs via integrating evolutionary testing and symbolic execution,”
in ASE, 2008.

[6] M. Souza, M. Borges, M. d’Amorim, and C. S. Păsăreanu, “CORAL:
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