
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Quantified Data Automata for Linear Data Structures
A Register Automaton Model with Applications to Learning
Invariants of Programs Manipulating Arrays and Lists

Pranav Garg · Christof Löding ·
P. Madhusudan · Daniel Neider

Received: date / Accepted: date

Abstract We propose a new automaton model, called quantified data automata over
words, that can model quantified invariants over linear data structures, and study
their theory, including closure properties, canonical minimality, and decidability of
emptiness. We build poly-time active learning algorithms for them, where the learner
is allowed to query the teacher with membership and equivalence queries. In order
to express invariants in decidable logics, we invent a decidable subclass of QDAs,
called elastic QDAs, and show translations to decidable theories of arrays and lists.
We also prove that every QDA has a unique minimally-over-approximating elastic
QDA, showing a robust technique for abstracting QDA expressible properties to the
decidable fragments expressed by elastic QDAs. We then give an application of these
theoretically sound and efficient active learning algorithms to program verification
by building a passive learning framework that efficiently learns adequate quantified
linear data structure invariants from samples obtained from dynamic executions for
a class of programs.

Keywords Quantified Data Automata · Register Automata · Invariants · Linear
Data Structures

1 Introduction

Linear data-structures, such as arrays and linked lists, are important unbounded
data-structures used in computer science. Properties of such linear data-structures
require quantification due to the unbounded nature of these structures. For instance,

Pranav Garg and P. Madhusudan
Dept. of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Ave., Urbana, IL 61801, USA
Tel.: +1-217-244-1323
E-mail: garg11@illinois.edu, madhu@illinois.edu

Christof Löding and Daniel Neider
Lehrstuhl für Informatik 7, RWTH Aachen University, 52056 Aachen, Germany
Tel.: +49-241-8021701
Fax: +49-241-8022215
E-mail: loeding@automata.rwth-aachen.de, neider@automata.rwth-aachen.de

2 Pranav Garg et al.

expressing that the data stored in a linked list is sorted requires quantification.
Reasoning with such data-structures requires expressing such properties, especially
in program verification where such properties can encode pre/post conditions or
invariants that help prove a program correct.

In many fields of logic, automata theory plays an important role as a normal form
for logic. For instance, monadic second order logic on labeled words and trees, both
finite and infinite, are captured using finite-state automata on these structures [33,16].
A connection to automata theory is often useful as the simple structure of automata
in terms of graphs gives a better arena than logic to study algorithmic problems
on the associated logic. Decision procedures such as satisfiability on logic (and even
model-checking of systems) can be translated to appropriate emptiness algorithms
on graphs [34]. Another important algorithmic procedure that automata yield are
learning algorithms— automata-based learning algorithms give a means to learn the
corresponding logical formulae in various learning models [3,15].

In this paper, our main motivation stems from program verification, in particular
the problem of synthesizing loop invariants for programs that express properties
of linear data-structures. Synthesizing invariants for programs is one of the most
challenging problems in verification today. While there are several logical theories
of linear data-structures and several fragments have a decidable validity problem [7,
21], our main motivation is to synthesize invariants using learning. We hence seek an
automaton model for linear data-structures that (a) can express properties of the
structure as well as the data contained in the data-structure, (b) can express typical
quantified properties of such linear data-structures that arise in verification, and (c)
has subfragments that can be translated to known decidable fragments of logics on
arrays and lists.

In an active black-box learning framework, we look upon the invariant as a set
of configurations of the program, and allow the learner to query the teacher for
membership and equivalence queries on this set. Furthermore, we fix a particular
representation class for these sets, and demand that the learner learn the smallest
(simplest) representation that describes the set. A learning algorithm that learns in
time polynomial in the size of the simplest representation of the set is desirable. In
passive black-box learning, the learner is given a sample of examples and counter-
examples of configurations, and is asked to synthesize the simplest representation
that includes the examples and excludes the counter-examples. In general, several
active learning algorithms that work in polynomial time are known (e.g., learning
regular languages represented as DFAs [3]) while passive polynomial-time learning is
rare (e.g., conjunctive Boolean formulas can be learned but general Boolean formulas
cannot be learned efficiently, automata cannot be learned passively efficiently) [18].

In this paper, we build active learning algorithms for quantified logical formulas
describing sets of linear data-structures. Our aim is to build algorithms that can learn
formulas of the kind “∀y1, . . . , yk ϕ”, where ϕ is quantifier-free, and that captures
properties of arrays and lists (the variables range over indices for arrays, and locations
for lists, and the formula can refer to the data stored at these positions and compare
them using arithmetic, etc.). Furthermore, we show that we can build learning
algorithms that learn properties that are expressible in known decidable logics. We
then employ the active learning algorithm in a passive learning setting where we
show that by building an imprecise teacher that answers the questions of the active
learner, we can build effective invariant generation algorithms that learn simply from
a finite set of examples.

Quantified Data Automata for Linear Data Structures 3

We can model linear data-structures as data words, where each position is deco-
rated with a letter from a finite alphabet modeling the program’s pointer variables
that point to that cell in the list or index variables that index into the cell of the
array, and with data modeling the data value stored in the cell, e.g., integers. We
hence seek automata models for expressing quantified properties of such data-words.

Data-words and quantified data automata:

Our first technical contribution is a novel representation (normal form) for quantified
properties of linear data-structures, called quantified data automata (QDA).

Quantified data automata (QDA) are a new model of automata over data words
that are powerful enough to express a class of universally quantified properties of
data words. A QDA accepts a data word provided it accepts all possible annotations
of the data word with valuations of a (fixed) set of variables Y = {y1, . . . , yk}; for
each such annotation, the QDA reads the data word, records the data stored at the
positions pointed to by Y , and finally checks these data values against a data formula
determined by the final state reached. QDAs are very powerful in expressing typical
invariants of programs manipulating lists and arrays, including invariants of a wide
variety of searching and sorting algorithms, maintenance of lists and arrays using
insertions/deletions, in-place manipulations that destructively update lists, etc.

We study several properties of QDAs. First, QDAs can be viewed as accepting
data-words at one level, but also as acceptors of valuation words at another level,
which encode a data-word as well as an interpretation of the universally quantified
variables. We show that unique minimal (minimal in number of states) QDA do not
exist for languages of data-words, but unique minimal (and hence canonical) QDAs
do exist for languages of valuation words. The view of QDAs as acceptors of valuation
words links it closer to classical automata theory, as we can view QDAs as essentially
Moore-machines that read valuation words and output data-formulas.

Turning to closure properties, we show that the class of languages accepted by
QDAs are not, in general, closed under union and complementation. Quantified
data-automata implicitly involve universal quantification on the outermost level, and
hence it is not surprising that they are not closed under union and complementation.
However, when the formula lattice is closed under conjunction, then we prove that
the class of languages accepted by such QDAs are closed under intersection.

Learning quantified data automata:

Our second main contribution is a an efficient active learning algorithm for QDAs.
Using our result that for any set of valuation words (data words with valuations for
the variables Y), there is a canonical QDA, we show that learning valuation words
can be reduced to learning formula words (words with no data but paired with data
formulas). In this model, the learner can ask a membership query for any word and
the teacher replies with the formula associated with the word, and the learner can
ask an equivalence query giving a QDA, and the teacher either answers yes (if the
QDA accepts the language she has in mind) or returns a counterexample consisting
of a word and the data formula associated with it. Note that the learning algorithm
is not in terms of data-words (which have concrete data but no interpretation for

4 Pranav Garg et al.

universal variables) nor in terms of valuation words (which have concrete data and
have interpretation of universal variables) but in terms of formula words (which have
no concrete data but have an interpretation for universal variables). Our learning
algorithm is based on an extension of Angluin’s learning algorithm for DFAs [3],
extended to QDAs by viewing QDAs as Moore machines accepting formula words.
The number of queries the learner poses and the time it takes is bound polynomially
in the size of the canonical QDA that is learned. The learning algorithm we develop
can hence be used to learn the quantified logical formulas that QDAs represent.

Elastic QDAs, decidable logics, Unique Minimal Over-Approximations:

The class of quantified properties that can be expressed using QDAs is very powerful,
and do not admit decidable satisfiability problems, in general. The corresponding
logical formulas in the theory of arrays and lists are also undecidable, in general.

In the context of program verification, even if we use QDAs to learn invariants,
we will be unable to verify automatically whether the learned properties are adequate
invariants for the program at hand. Even though SMT solvers support heuristics to
deal with quantified theories (like e-matching [27]), in our experiments, the verification
conditions derived from invariants expressed as QDAs could not be handled by such
SMT solvers. The third contribution of this paper is hence to lift QDAs and the
learning algorithms to subclasses that admit decidable validity problems.

We identify a subclass of QDAs (called elastic QDAs) and show two main results
for them: (a) elastic QDAs can be converted to formulas of decidable logics, to the array
property fragment [7] when modeling arrays and the decidable Strand fragment [21]
when modeling lists; (b) a surprising unique minimal over-approximation theorem
that says that for every QDA, accepting say a language L of valuation-words, there
is a minimal (with respect to inclusion) language of valuation-words L′ ⊇ L that is
accepted by an elastic QDA.

For the former, we identify a common property of the array property fragment and
the syntactic decidable fragment of Strand, called elasticity (following the general
terminology in the literature on Strand [21]). Intuitively, both the array property
fragment and Strand prohibit quantified cells to be tested to be bounded distance
away (the array property fragment does this by disallowing arithmetic expressions over
the quantified index variables [7] and the decidable fragment of Strand disallows this
by permitting only the use of →∗ or →+ in order to compare quantified variables [21,
22]). We identify a structural restriction of QDAs that permits only elastic properties
to be stated.

The latter result allows us to learn QDAs and then apply the unique minimal
over-approximation (which is effective) to compute the best over-approximation of
it that can be expressed by elastic QDAs (which then yields decidable verification
conditions in the context of program verification). The result is proved by showing
that there is a unique way to minimally morph a QDA to one that satisfies the
elasticity restrictions.

Quantified Data Automata for Linear Data Structures 5

Application to Verification: Passive Learning of Quantified Invariants:

The active learning algorithm for QDAs can itself be used in a verification framework,
where the membership and equivalence queries are answered using under-approximate
and deductive techniques (for instance, for iteratively increasing values of k, a teacher
can answer membership questions based on bounded and reverse-bounded model-
checking, and answer equivalence queries by checking if the invariant is adequate
using a constraint solver). In this paper, we do not pursue an implementation of
active learning as above, but instead build a passive learning algorithm that uses the
active learning algorithm. We also refer the reader to recent work on a new learning
model called ICE (learning using examples, counter-examples, and implications),
which is a much more robust active learning model for synthesizing invariants [13].

Our motivation for doing passive learning is that we believe (and we validate this
belief using experiments) that in many problems, a lighter-weight passive-learning
algorithm which learns from a few randomly-chosen small data-structures is sufficient
to find the invariant. Note that passive learning algorithms, in general, often boil
down to a guess-and-check algorithm of some kind, and often pay an exponential
price in the size of the property learned. Designing a passive learning algorithm
using an active learning core allows us to build more interesting algorithms; in our
algorithm, the inacurracy/guessing is confined to the way the teacher answers the
learner’s questions.

The passive learning algorithm works as follows. Assume that we have a finite set
of configurations S, obtained from sampling the program (by perhaps just running
the program on various random small inputs). We are required to learn the simplest
representation that captures the set S (in the form of a QDA). We now use an active
learning algorithm for QDAs; membership questions are answered with respect to
the set S (note that this is imprecise, as an invariant I must include S but need not
be precisely S). When asked an equivalence query with a set I, we check whether
S ⊆ I; if yes, we can check if the invariant is adequate using a constraint solver and
the program.

It turns out that this is a good way to build a passive learning algorithm. First,
enumerating random small data-structures that get manifest at the header of a loop
fixes for the most part the structure of the invariant, since the invariant is forced to
be expressed as a QDA. Second, our active learning algorithm for QDAs promises
never to ask long membership queries (queried words are guaranteed to be less
than the diameter of the automaton), and often the teacher has the correct answers.
Finally, note that the passive learning algorithm answers membership queries with
respect to S; this is because we do not know the true invariant, and hence err on the
side of keeping the invariant semantically small. This inaccuracy is common in most
learning algorithms employed for verification (e.g, Boolean learning [20], compositional
verification [10,2], etc). This inaccuracy could lead to a non-optimal QDA being
learnt, and is precisely why our algorithm need not work in time polynomial in the
simplest representation of the concept (though it is polynomial in the invariant it
finally learns).

The proof of the efficacy of the passive learning algorithm rests in the experimental
evaluation. We implement the passive learning algorithm (which in turn requires
an implementation of the active learning algorithm). By building a teacher using
dynamic test runs of the program and by pitting this teacher against the learner, we
learn invariant QDAs, and then over-approximate them using elastic QDAs (EQDAs).

6 Pranav Garg et al.

These EQDAs are then transformed into formulas over decidable theories of arrays
and lists. Using a wide variety of programs manipulating arrays and lists, ranging from
several examples in the literature involving sorting algorithms, partitioning, merging
lists, reversing lists, and programs from the Glib list library, programs from the Linux
kernel, a device driver, and programs from a verified-for-security mobile application
platform, we show that we can effectively learn adequate quantified invariants in
these settings. In fact, since our technique is a black-box technique, we show that it
can be used to infer pre-conditions/post-conditions for methods as well.

The paper is structured as follows. Section 2 informally motivates and illustrates
quantified invariants over linear data structures, quantified data automata, examples
of elastic invariants, and elastic data automata. Section 3 formally introduces the
QDA model, data-words, valuation words, and formula words. In Section 4, we explore
various properties of QDAs and the languages accepted by them. In Section 5 we
present an active learning algorithm, showing how Angluin-style learning of finite
automata can be extended to learn QDAs. Section 6 introduces the subclass of
QDAs, called elastic QDAs, and shows the unique elastification result of quantified
data automata to elastic quantified data automata. In Section 7 we describe how
linear data-structures can be modeled using data-words and properties of linear
data-structures using QDAs/EQDAs, and also gives a translation from EQDAs to
decidable fragments of arrays and lists. We describe an application to passively
learning invariants involving arrays and lists in program verification in Section 8,
using the active learning algorithm for QDAs/EQDAs, and present experimental
results of our evaluation. Finally, Section 9 concludes with some future directions of
research.

Related Work:

For invariants expressing properties on the dynamic heap, shape analysis techniques
are the most well known [29], where locations are classified/merged using unary
predicates (some dictated by the program and some given as instrumentation predi-
cates by the user), and abstractions summarize all nodes with the same predicates
into a single node. The data automata that we build also express an infinite set of
linear data structures, but do so using automata, and further allow n-ary quantified
relations between data elements. In recent work, [5] describes an abstract domain for
analyzing list manipulating programs, that can capture quantified properties about
the structure and the data stored in lists. This domain can be instantiated with any
numerical domain for the data constraints and a set of user-provided patterns for
capturing the structural constraints. However, providing these patterns for quantified
invariants is in general a difficult task.

In recent years, techniques based on Craig’s interpolation [25] have emerged as a
new method for invariant synthesis. Interpolation techniques, which are inherently
white-box, are known for several theories, including linear arithmetic, uninterpreted
function theories, and even quantified properties over arrays and lists [17,26,1,
30]. These methods use different heuristics like term abstraction [1], preferring
smaller constants [17,26] and use of existential ghost variables [30] to ensure that the
interpolant converges on an invariant from a finite set of spurious counter-examples.
IC3 [6] is another white-box technique for generalizing inductive invariants from a
set of counter-examples.

Quantified Data Automata for Linear Data Structures 7

A primary difference in our work, compared to all the work above, is that ours is
a black-box technique that does not look at the code of the program, but synthesizes
an invariant from a snapshot of examples and counter-examples that characterize the
invariant. The black-box approach to constructing invariants has both advantages
and disadvantages. The main disadvantage is that information regarding what the
program actually does is lost in invariant synthesis. However, this is the basis for its
advantage as well—by not looking at the code, the learning algorithm promises to
learn the sets with the simplest representations in polynomial time, and can also be
much more flexible. For instance, even when the code of the program is complex, for
example having non-linear arithmetic or complex heap manipulations that preclude
logical reasoning, black-box learning gives ways to learn simple invariants for them.

There are several black-box learning algorithms that have been explored in
verification. Boolean formula learning has been investigated for finding quantifier-free
program invariants [9], and also extended to quantified invariants [20]. However,
unlike us, [20] learns a quantified formula given a set of data predicates as well as
the predicates which can appear in the guards of the quantified formula. Recently,
machine learning techniques have also been explored [31]. Variants of the Houdini
algorithm [12] essentially use conjunctive Boolean learning (which can be achieved in
polynomial time) to learn conjunctive invariants over templates of atomic formulas
(see also [32]). The most mature work in this area is Daikon [11], which learns formulas
over a template, by enumerating all formulas and checking which ones satisfy the
samples, and where scalability is achieved in practice using several heuristics that
reduce the enumeration space which is doubly-exponential. For quantified invariants
over data-structures, however, such heuristics aren’t very effective, and Daikon often
restricts learning only to formulas of very restricted syntax, like formulas with a
single atomic guard, etc. In our experiments Daikon was, for instance, not able to
learn an adequate loop invariant for the selection sort algorithm.

2 Overview

List and Array Invariants:

Consider a typical invariant in a sorting program over lists where the loop invariant
is expressed as:

head→∗ i ∧ ∀y1, y2.((head→∗ y1 ∧ succ(y1, y2) ∧ y2 →∗ i)⇒ d(y1) ≤ d(y2)) (1)

This says that for all cells y1 that occur somewhere in the list pointed to by head and
where y2 is the successor of y1, and where y1 and y2 are before the cell pointed to
by a scalar pointer variable i, the data value stored at y1 is no larger than the data
value stored at y2. This formula is not in the decidable fragment of Strand [21,22]
since the universally quantified variables are involved in a non-elastic relation succ
(in the subformula succ(y1, y2)). Such an invariant for a program manipulating arrays
can be expressed as:

∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i)⇒ A[y1] ≤ A[y2]) (2)

Note that the above formula is not in the decidable array property fragment [7].

8 Pranav Garg et al.

Quantified Data Automata: The key idea in this paper is an automaton model
for expressing such constraints called quantified data automata (QDA). The above
two invariants are expressed by the following QDA:

q5

q0 q1 q2 q3 q4

d(y1) ≤ d(y2)

true

({head},−)

({head, i}, ∗),
({head}, y2)

(b, y1)

({i}, ∗),
(b, y2)

b

(b, y2)

b, ({i},−)

({i}, y2)

({i},−)

b b

?

({head}, y1)

The above automaton reads (deterministically) data words whose labels denote
the positions pointed to by the scalar pointer variables head and i, as well as valuations
of the quantified variables y1 and y2. We use two blank symbols that indicate that
no pointer variable (“b”) or no variable from Y (“−”) is read in the corresponding
component; moreover, b = (b,−). Missing transitions go to a sink state labeled false.
The above automaton accepts a data word w with a valuation v for the universally
quantified variables y1 and y2 as follows: it stores the value of the data at y1 and y2
in two registers, and then checks whether the formula annotating the final state it
reaches holds for these data values. The automaton accepts the data word w if for
all possible valuations of y1 and y2, the automaton accepts the corresponding word
with valuation. The above automaton hence accepts precisely those set of data words
that satisfy the invariant formula.

Decidable Fragments and Elastic Quantified Data Automata: The emptiness
problem for QDAs is undecidable; in other words, the logical formulas that QDAs
express fall into undecidable theories of lists and arrays. A common restriction in
the array property fragment as well as the syntactic decidable fragments of Strand
is that quantification is not permitted to be over elements that are only a bounded
distance away. The restriction allows quantified variables to only be related through
elastic relations (following the terminology in Strand [21,22]).

For instance, a formula equivalent to the formula in Eq. 1 but expressed in the
decidable fragment of Strand over lists is:

head→∗ i ∧ ∀y1, y2.((head→∗ y1 ∧ y1 →∗ y2 ∧ y2 →∗ i)⇒ d(y1) ≤ d(y2)) (3)

This formula compares data at y1 and y2 whenever y2 occurs sometime after y1, and
this makes the formula fall in a decidable class. Similarly, a formula equivalent to the
formula Eq. 2 in the decidable array property fragment is:

∀y1, y2.((0 ≤ y1 ∧ y1 ≤ y2 ∧ y2 ≤ i)⇒ A[y1] ≤ A[y2]) (4)

The above two formulas are captured by a QDA that is the same as in the figure
above, except that the b-transition from q2 to q5 is replaced by a b-loop on q2.

Quantified Data Automata for Linear Data Structures 9

We identify a restricted form of quantified data automata, called elastic quantified
data automata (EQDA) in Section 6, which structurally captures the constraint
that quantified variables can be related only using elastic relations (like →∗ and ≤).
Furthermore, we show in Section 7 that EQDAs can be converted to formulas in the
decidable fragment of Strand and the array property fragment, and hence expresses
invariants that are amenable to decidable analysis across loop bodies.

It is important to note that QDAs are not necessarily a blown-up version of
the formulas they correspond to. For a formula, the corresponding QDA can be
exponential, but for a QDA the corresponding formula can be exponential as well
(QDAs are like BDDs, where there is sharing of common suffixes of constraints, which
is absent in a formula).

3 Preliminaries

We model lists (and finite sets of lists) and arrays that contain data over some data
domain D as finite words, called data words, encoding the pointer variables and the
data values.

Definition 1 (Data words) Let PV = {p1, . . . , pr} be a finite set of pointer
variables, Σ = 2PV , and D a data domain. A data word over PV and D is a word
u ∈ (Σ×D)∗ where every p ∈ PV occurs exactly once in u (i.e., for each u = a1 . . . an
and p ∈ PV , there exists precisely one j ∈ {1, . . . , n} such that aj = (X, d) and
p ∈ X).

The empty set in the first component of a data word corresponds to a blank
symbol indicating that no pointer variable occurs at this position. We also denote
this blank symbol by the letter b.

Let Y = {y1, . . . , yk} be a nonempty, finite set of universally quantified variables.
The automata we build accepts a data word if for all possible valuations of Y over the
positions of the data word, the data stored at these positions satisfy certain properties.
For this purpose, the automaton reads data words extended by valuations of the
variables in Y , called valuation words. The variables are then quantified universally
in the semantics of the automaton model (as explained later in this section).

Definition 2 (Valuation word) A valuation word is a word v ∈ (Σ× (Y ∪{−})×
D)∗ where v projected to its first and third component forms a data word and where
each y ∈ Y occurs exactly once in v.

We use the symbol “−” to denote positions in valuation words where no universally
quantified variable occurs. Note that the choice of the alphabet ensures that all
universally quantified variables have to occur at different positions. A valuation word
corresponds to a data word with a valuation of Y . The corresponding data word is
the word dw(v) resulting from projecting v to its first and third components.

Later, we will also consider a third type of words, called symbolic words. In
contrast to data and valuation words, symbolic words only capture the structure of a
list or array but do not contain data.

Definition 3 (Symbolic word) Let Σ = 2PV and Π = Σ× (Y ∪{−}). A symbolic
word is a word w ∈ Π∗ where each p ∈ PV occurs exactly once in w and each y ∈ Y
occurs exactly once in w.

10 Pranav Garg et al.

We denote the symbol in Π representing neither a pointer nor a universally
quantified variable by b = (b,−). The symbolic word represented by a valuation word
v is the word sw(v) resulting from projecting v to its first two components.

To express the properties on the data, let us fix a set of constants, functions
and relations over D. We assume that the quantifier-free first-order theory over this
domain is decidable; we encourage the reader to keep in mind the theory of integers
with constants (0, 1, etc.), addition, and the usual relations (≤, <, etc.) as a standard
example of such a domain.

Quantified data automata use a finite set F of formulas over the atoms d(y1), . . . , d(yn)
that is additionally equipped with a (semi-)lattice structure of the form F = (F,v
,t, false, true) where v is the partial-order relation, t is the least-upper bound, and
false and true are formulas required to be in F and correspond to the bottom and top
elements of the lattice. Furthermore, we assume that whenever α v β, then α⇒ β.
Also, we assume that each pair of formulas in the lattice is pairwise inequivalent.

One example of such a formula lattice over the data domain of integers can
be obtained by taking a set of representatives of all possible inequivalent Boolean
formulas over the atomic formulas involving no constants, defining α v β if and only
if α ⇒ β, and taking the least-upper bound of two formulas as the disjunction of
them. Such a lattice would be of size doubly exponential in the number of variables
n, and consequently, in practice, we may want to use a different coarser lattice, such
as the Cartesian formula lattice. The Cartesian formula lattice is formed over a set
of atomic formulas and consists of conjunctions of literals (atoms or negations of
atoms). The least-upper bound of two formulas is taken as the conjunction of those
literals that occur in both formulas. For the ordering, we define α v β if all literals
appearing in β also appear in α. The size of a Cartesian lattice is exponential in the
number of literals.

We are now ready to introduce the automaton model.

Definition 4 (Quantified data automata) Let PV be a finite set of program
variables, Y a finite, nonempty set of universally quantified variables, D a data
domain, and F a formula lattice over a finite set F of formulas. A quantified data
automaton (QDA) is a tuple A = (Q,Π, q0, δ, f) where Q is a finite, nonempty set
of states, Π = Σ × (Y ∪ {−}) is the input alphabet, δ : Q×Π → Q is the (partial)
transition function, and f : Q→ F is the final-evaluation function, which maps each
state to a data formula.

Intuitively, a QDA is a register automaton that reads the data word extended by
a valuation that has a register for each y ∈ Y , which stores the data stored at the
positions evaluated for Y , and checks whether the formula decorating the final state
reached holds for these registers. It accepts a data word u ∈ (Σ ×D)∗ if it accepts
all possible valuation words v extending u with a valuation over Y . We formalize this
below.

A configuration of a QDA A = (Q,Π, q0, δ, f) is a pair (q, r) where q ∈ Q and
r : Y → D is a partial variable assignment. The initial configuration is (q0, r0) where
the domain of r0 is empty.

The run ofA on a valuation word v = (a1, y1, d1) . . . (an, yn, dn) ∈ (Σ×(Y ∪{−})×
D)∗ is a sequence (q0, r0), . . . , (qn, rn) of configurations that satisfies δ(qi, (ai, yi)) =

Quantified Data Automata for Linear Data Structures 11

qi+1 and

ri+1 =

{
ri{yi ← di} if yi ∈ Y ;
ri if yi = −;

where i ∈ [0, n), the configuration (q0, r0) is the initial configuration, and ri{yi ← di}
corresponds to the mapping ri in which the argument yi is mapped to the value di.
We use A : (q0, r0) v−→ (qn, rn) as a shorthand-notation.

The QDA A accepts a valuation word v if A : (q0, r0) v−→ (q, r) with r |= f(q);
that is, after reading the valuation word, the data stored in the registers satisfies
the formula annotating the state finally reached. The language Lval(A) is the set of
valuation words accepted by A.

The QDA A accepts a data word u ∈ (Σ ×D)∗ if A accepts all valuation words
v with dw(v) = u. The language Ldat(A) is the set of data words accepted by A.

To ease working with QDAs and to obtain the intended semantics, we assume
throughout this chapter that each QDA satisfies two further constraints:

– Each QDA verifies that its input satisfies the constraints on the number of
occurrences of variables from PV and Y . All inputs violating these constraints
(i.e., all inputs that are not valuation words) either do not admit a run due to
missing transitions or lead to a dedicated state labeled with the data formula
false. This property implies that the states of an QDA are “typed” with the
set of variables that have been read so far. As a consequence, cycles in the
transition structure of an QDA can only be labeled with b-symbols. Note that
this assumption is no restriction because both the language of valuation words
and the language of data words are defined in terms of words that satisfy the
correct occurrence of variables from PV and Y .

– Each QDA verifies that the universally quantified variables occur in its input in
the same fixed order, say y1 ≺ · · · ≺ yk. All valuation words violating this order
lead to a dedicated state labeled with the data formula true (i.e., all such valuation
words are accepted). The rationale behind this assumption is the following: since
the variables y ∈ Y are universally quantified, it is sufficient to check a property
with respect to a fixed order and a different order should not change the accepted
language of data words.
Although this assumption is a restriction in general, each QDA can be transformed
into one that accepts the same data language and respects the predetermined
variable ordering if the formula lattice is closed under conjunction. The idea for
such a construction is to use a subset construction that follows all paths that only
differ in the order of Y . For each state in a set of states reached like that, one
remembers in which order the variables in Y have occurred. At the final states,
one uses the conjunction of all formulas in the set with the appropriate renaming
of the variables in Y . Due to the universal semantics of QDAs, this captures in
a QDA that accepts the same data language as original automaton. Since most
natural formula lattices, such as the full lattice and the Cartesian lattice (which
we use in this chapter), are closed under conjunction, we can without loss of
generality assume that each QDA respects a fixed ordering of the universally
quantified variables.

12 Pranav Garg et al.

q1 q2

q0 q3

q4 q5 q6 q7

true

d(y1) ≤ d(y2)

b

(b, y1)

(b, y2)

b (b, y1)

(b, y2)
b

(b, y2)

b

(b, y2)

b

b

(b, y2)

b

b

(b, y1)

Fig. 1: A QDA expressing the property over lists that the data on even positions is
sorted. Missing transitions lead to a sink-state labeled with false, which is not shown
for the sake of readability. All states depicted as a single circle are implicitly labeled
with the formula false.

4 Properties of QDAs

In this section, we study properties of QDAs, such as whether QDAs allow for
canonical representations, closure under Boolean operations, and decidability results.
We begin by analyzing the notion of canonical representations for QDAs.

4.1 Canonical QDAs

Recall that QDAs define two kinds of languages, namely a language of data words
and a language of valuation words. We begin by observing that we cannot hope for
unique minimal QDA on the level of data words.

To see why, consider the QDA A in Figure 1 over PV = ∅ and Y = {y1, y2}. It
accepts all valuation words in which
– d(y1) ≤ d(y2) if y1 occurs before y2 and y1, y2 are both on even positions; or
– y2 < y1; or
– at least one of y1 and y2 does not occur at an even position.

Hence, A accepts the language of data words that consist of all data words such that
the data on even positions is sorted. Since each QDA has to ensure that each variable
occurs exactly once, the number of states of A is minimal for defining this language
of data words.

However, a QDA in which we replace the transition δ(q6, b) = q5 by the transition
δ(q6, b) = q1 accepts the same language of data words. This new QDA checks the
sortedness only for all y1, y2 with y2 = y1 + 2, which is sufficient. This shows that
the transition structure of a state-minimal QDA for a given language of data words
is not unique.

On the level of valuation words, on the other hand, there exists a minimal canonical
QDA, which is formalized next. This is because the automaton model is deterministic

Quantified Data Automata for Linear Data Structures 13

and, since all universally quantified variables are in different positions, the automaton
cannot derive any relation on the data values during its run. Formally, we can state
the following theorem.

Theorem 1 For each QDA A there is a unique minimal QDA Amin that accepts
the same set of valuation words.

Proof Consider a language Lval of valuation words that can be accepted by a QDA,
and let w ∈ Π∗ be a symbolic word. Then there must be a formula ψw in the lattice
that characterizes precisely the valuation words v ∈ Lval that extend w with data
(i.e., that satisfy sw(v) = w). Since we assume that all the formulas in the lattice
are pairwise non-equivalent, this formula is uniquely determined. This formula ψw is
obtained by considering for each valuation word v with sw(v) = w the greatest-lower
bound ϕv of all formulas in the lattice that are satisfied in v, and then taking the
least-upper bound of all these ϕv.

In fact, the formula ψw is independent of the actual QDA. To prove this, take
any QDA A that accepts Lval . Then w leads to some state q in A that outputs the
formula f(q). If w leads to any other formula in another QDA A′, then A′ accepts a
different language of valuation words.

Thus, a language of valuation words can be seen as a function that assigns to
each symbolic word a uniquely determined formula, and a QDA can be viewed as a
Moore machine that computes this function. For each such Moore machine, there
exists a unique minimal one that computes the same function (see [19]), hence the
theorem. ut

4.2 Boolean Operations

Because of the universal semantics of QDAs, it is easy to see that the class of
QDA-definable data languages is not closed under complement. Since the universal
quantifier does not distribute over disjunctions, the class is also not closed under
union.

Proposition 1 There is a lattice F that is closed under all Boolean operations, such
that the class of QDA-definable languages of data words over this lattice is not closed
under complement and union.

Proof Take the data domain of the integers, and all Boolean formulas using the
binary predicate ≤. The set of pointer variables is empty. We have already seen
that the set L of data words in which the data is sorted in ascending order is
QDA definable. The complement of this language is the set of data words in which
there are two positions y1 and y2 such that y1 < y2 and d(y1) > d(y2). Assume
that there is a QDA A accepting this language. We assume here that the QDA
uses only two variables y1, y2 but the argument can easily be extended to any
number of variables. Consider the two data words w1 = (b, 2)(b, 1)(b, 3)(b, 4) and
w2 = (b, 1)(b, 2)(b, 4)(b, 3). Both have to be accepted by A. However, A then also
accepts the data word w = (b, 1)(b, 2)(b, 3)(b, 4) because for each valuation y1, y2 in
w there is a valuation in w1 or w2 that cannot be distinguished from the valuation of
w by A (i.e., the valuation word leads to the same state and satisfies the same data
formulas); for instance, the valuation (b, y1, 1)(b,−, 2)(b, y2, 3)(b,−, 4) in w cannot

14 Pranav Garg et al.

be distinguished from (b, y1, 2)(b,−, 1)(b, y2, 3)(b,−, 4) in w1. Thus, all valuations of
w are accepted but w is in L and not in its complement.

For the non-closure under union consider the set L from above, and the set L′
of data words in which the data is sorted in descending order. An argument similar
to the one from above shows that the union of these two languages is not QDA
definable. ut

Since universal quantification distributes over conjunction, we obtain a positive
result for intersection of data languages.

Proposition 2 Let F be a formula lattice. If F is closed under conjunction, then
the class of QDA-definable languages of data words is closed under intersection.

Proof A standard product construction for A1 and A2 with f(q1, q2) = f(q1) ∧ f(q2)
results in a QDA for the desired language. ut

As for the case of canonical QDAs, we now consider closure properties on the
level of valuation words.

Proposition 3 Let F be a formula lattice. The class of QDA-definable languages of
valuation words is closed under

1. Complement if F is closed under negation;
2. Union if F is closed under disjunction; and
3. Intersection if F is closed under conjunction.

Proof For the complement, just take the negation of the final formulas. For union
and intersection use a product construction and combine the formulas by disjunction
for union, and conjunction for intersection. ut

This shows that, on the level of valuation words, QDAs behave much more like
standard automata, given that the lattice has the corresponding properties. For the
case of union and intersection, we additionally obtain the following weaker version of
the results if we do not assume the corresponding closure properties of the lattice.

Proposition 4 Let F be a formula lattice (with least upper bound and greatest
lower bound operators), and let A1,A2 be two QDAs. There exists a unique minimal
QDA-definable language of valuation words containing Lval(A1) ∪ Lval(A2), and
there is a unique maximal QDA-definable language of valuation words contained in
Lval(A1) ∩ Lval(A2).

Proof As in Proposition 3, we use product constructions, now combining the final
formulas using the least upper bound and greatest lower bound instead of disjunction
and conjunction. ut

4.3 Decidability Results

The expressive power of QDAs depends on the data domain and the formula lattice
for testing properties of the data. The formula lattices used for expressing nontrivial
properties of data words usually lead to the undecidability of the emptiness problem
for QDAs. For instance, using the integers as data domain, and an appropriate

Quantified Data Automata for Linear Data Structures 15

signature, it is easy to reduce the halting problem for two-counter machines to
the emptiness problem of QDAs. Using blocks of three successive positions, one
encodes the line number, and the two counter values in the data. The formulas at
the final states are used to check that the data encoding the configurations faithfully
simulates the computation of the given two-counter machine (a data domain with
linear arithmetic would suffice). With a bit more effort, this result can even be
extended to formulas that only use Boolean combinations of equality tests.

In contrast, the universality problem, that is, whether a given QDA accepts all
data words (with the appropriate restrictions on the labeling by pointer variables), is
decidable, provided the quantifier-free fragment used to express the data formulas
is decidable. This amounts to a simple check whether there is a symbolic word that
does not admit a run, or leads to a final state with a formula which is not true (i.e.,
not a tautology). In this case, one can construct a valuation word that is not accepted
by the QDA, and thus the corresponding data word is also rejected.

5 Learning QDAs

The goal of this section is to develop an learning algorithm for QDAs that operates
in Angluin’s active learning setting [3]. To this end, we proceed as follows: we begin
this section by recapping Angluin’s active learning setting for regular languages.
Then, we describe how to understand QDAs as Moore machines (i.e., deterministic
finite automata with output at their states) and briefly describe how to learn Moore
machines in an Angluin-style active learning setting. Finally, we reduce the problem
of actively learning QDAs to the problem of actively learning Moore machines.

5.1 Angluin’s Active Learning Setting

Angluin’s active learning setting, which she has introduced in [3], is a framework
in which the task is to “learn” a regular language L ⊆ Σ∗ over a fixed alphabet
Σ—called target language—by actively querying an external source for information.
The learning takes place between a learning algorithm—abbreviated learner—and
the information source—called teacher. The teacher can answer two types of queries:
membership and equivalence queries.

Membership query On a membership query, the learner provides a word u ∈ Σ∗
and the teacher replies “yes” if u ∈ L and “no” if u /∈ L.

Equivalence query On a membership query, the learner provides a regular language,
usually given as a DFA A, and the teacher checks whether A is equivalent to the
target language. If this is the case, he returns “yes”. If this is not the case, he
returns a counterexample u ∈ L(A)⇔ u /∈ L as a witness that L(A) and L are
indeed different.

Given a teacher for a regular target language L, the learner’s task is to find a DFA
(usually of minimal size) that passes an equivalence query.

In [3], Angluin has not only introduced the active learning framework but also
developed a learning algorithm that learns the unique minimal deterministic automa-
ton that accepts the target language in polynomial time. This algorithm is based
on the Myhill-Nerode congruence of the target language: given a language L ⊆ Σ∗,

16 Pranav Garg et al.

the Myhill-Nerode congruence is the equivalence relation ∼L over words defined by
u ∼L v if and only if uw ∈ L⇔ vw ∈ L for all w ∈ Σ∗. Angluin’s pivotal idea is to
start with a coarse approximation of the Myhill-Nerode congruence and refine the
approximation, using membership and equivalence queries, until the Myhill-Nerode
congruence has been computed exactly; since the number of equivalence classes is
finite for every regular language, this approach is guaranteed to terminate eventually.

Internally, Angluin’s algorithm stores the data learned so far in a so-called
observation table O = (R,S, T); the set R ⊆ Σ∗ is a finite, prefix-closed set of
representatives that serve to represent equivalence classes, the set S ⊆ Σ∗ is a finite
set of samples that are used to distinguish representatives, and T : (R ∪R ·Σ) · S →
{“yes”, “no”} is a mapping that stores the actual table entries and is filled using
membership queries.

Angluin’s algorithm proceeds in rounds: In each round, the algorithm extends
the observation table until it is closed and consistent, which roughly corresponds to
the situation that the data stored in the table forms a congruence. Then, Angluin’s
algorithm derives a conjecture DFA from the table (similar to the construction of
the minimal DFA from the Myhill-Nerode congruence) and submits this conjecture
on an equivalence query. If the teacher replies “yes”, the learning terminates; if the
teacher returns a counterexample, on the other hand, Angluin’s algorithm adds the
counterexample along with all of its prefixes as new representatives to the table and
proceeds with the next iteration.

We refer the reader to [3] for an in-depth presentation of Angluin’s active learning
setting and Angluin’s algorithm. Here, we just want to summarize the main results.

Theorem 2 (Angluin [3]) Given a teacher for a regular target language L ⊆ Σ∗,
Angluin’s algorithm learns the minimal DFA accepting L in time polynomial in the
size n of this DFA and the length m of the longest counterexample returned by the
teacher. It asks O(n) equivalence queries and O(mn2) membership queries.

5.2 Viewing QDAs as Moore Machines

Moore machines are extensions of deterministic finite automata that are equipped with
output at their states and define a mapping rather than accept a language. Formally,
a Moore machine is a six-tupleM = (Q,Σ, Γ, q0, δ, λ) where Q is a nonempty, finite
set of states, Σ is the input alphabet, Γ is the output alphabet, q0 ∈ Q is the initial
state, δ : Q×Σ → Q is the transition function, and λ : Q→ Γ is the output function
that assigns an output-symbol to each state.

The run of a Moore machineM on a word u = a1 . . . an is a sequence q0, . . . , qn
of states that satisfies δ(qi, ai+1) = qi+1 for all i ∈ [0, n); as in the case of QDAs, we
use the shorthand-notationM : q0

u−→ qn to denote the run ofM on u. Each Moore
machine defines a total function fM that maps an input-word u ∈ Σ∗ to the output
of the state thatM reaches after reading u; more precisely, we define fM(u) = λ(q)
whereM : q0

u−→ q. Finally, we call a function f : Σ∗ → Γ Moore machine computable
if there exists a Moore machineM such that f = fM.

Let us now describe how one can view QDAs as Moore machines. Recall that
QDAs define two kind of languages, a language of data words and a language of
valuation words. On the level of valuation words, we can understand a QDA as an
automaton that reads the structural part of a valuation word (or a symbolic word)

Quantified Data Automata for Linear Data Structures 17

and outputs a data formula capturing the data. To make this intuition more precise,
let us introduce another type of words, which we call formula words.

Definition 5 (Formula words) Let PV be a finite set of pointer variables, Y a
finite set of universally quantified variables, and F a lattice over a set F of formulas. A
formula word is a finite word (w,ϕ) ∈ (Π∗×F) where, as before, Π = Σ× (Y ∪{−}),
and each p ∈ PV and each y ∈ Y occurs exactly once in w.

Note that a formula word does not contain elements of the data domain—
it simply consists of the symbolic word that depicts the pointers into the list
(modeled using Σ), a valuation for the quantified variables (modeled using Y ∪
{−}), as well as a formula over lattice F over the data domain. For example,
(({h}, y1)(b,−)(b, y2)({t},−), d(y1) ≤ d(y2)) is a formula word, where h points to the
first element, t to the last element, y1 points to the first element, and y2 to the third
element; and the data formula is d(y1) ≤ d(y2).

A QDA A = (Q, q0, Π, δ, f) over the set F of data formulas accepts a formula
word (w,ϕ) ∈ Π∗ × F if A reaches a state q ∈ Q on reading the symbolic word w
and f(q) = ϕ. Given a QDA A, we define the language Lf (A) ⊆ Π∗ × F of formula
words accepted by A in the usual way. Moreover, we call a language Lfor ⊆ Π∗ × F
of formula words QDA-acceptable if there exists a QDA A with Lf (A) = Lfor .

Note that not every language of formula words is QDA-acceptable; for instance,
consider the language

L?for = {(bi(h, y)bi, true) | i ≥ 1}.

A standard pumping argument shows that L?for cannot be accepted by a QDA since
the number of blanks at the beginning and at the end of a word have to match.
Furthermore, words whose symbolic component is not of the form bi(h, y)bi are not
present in L?for but a QDA necessarily assigns a unique formula to every symbolic
word. In fact, every QDA-acceptable language Lfor of formula words has to fulfill the
following constraints:
– For every symbolic word w ∈ Π∗, there exists a formula ϕ such that (w,ϕ) ∈ Lfor .
– If (w,ϕ) ∈ Lfor and (w,ϕ′) ∈ Lfor , then ϕ = ϕ′.
– There are only finitely many different formulas occurring in formula words in
Lfor .
These constraints allow us to treat QDAs as Moore machines that read symbolic

words and output data formulas. In fact, a QDA-acceptable language Lfor ⊆ Π∗ × F
is an alternative representation of a Moore machine-computable mapping f : Π∗ → F .
One easily deduces that two QDAs A and A′ (over the same lattice of formulas) that
accept the same set of valuation words also define the same set of formula words
(assuming that all the formulas in the lattice are pairwise non-equivalent). Thus, we
can easily reduce the problem of actively learning QDAs to the problem of actively
learning Moore machines, as we show next.

5.3 Actively Learning Moore Machines

In the context of actively learning Moore machines, the target concept is a Moore
machine computable function f : Σ∗ → Γ . Note that we obtain Angluin’s original
setting for learning regular languages by letting Γ = {0, 1}.

18 Pranav Garg et al.

Given A Moore machine computable function f : Σ∗ → Γ , a teacher for f answers
queries as follows.

Membership query On a membership query with a word u ∈ Σ∗, the teacher replies
the classification f(u).

Equivalence query On an equivalence query with a Moore machineM, the teacher
checks whether fM = f is satisfied. Is this the case, he returns “yes”. If this is
not the case, he returns a counterexample u ∈ Σ∗ with fM(u) 6= f(u).

Note that the learner and the teacher do not need to agree a priori on the output
alphabet since the learner can obtain this knowledge through membership queries.

One can, in a straight forward manner, adapt Angluin’s algorithm—in fact
any observation table-based learning algorithms, such as Rivest and Schapire’s
algorithm [28]—to learn Moore machines. The idea is to lift the Myhill-Nerode
congruence to Moore machine computable mappings f : Σ∗ → Γ by defining

u ∼f v if and only if ∀w ∈ Σ∗ : f(uw) = f(vw),

where u, v ∈ Σ∗. Then, it is indeed enough to adapt the mapping T of an observation
table to T : (R∪R ·Σ) ·S → Γ and the way conjectures are generated. For the latter,
we do no longer produce a DFA as a conjecture but a Moore machine whose output
is defined by the function value f(u) of the representatives u ∈ R. Chen et al. [8]
demonstrate this adaptation for the case |Γ | = 3.

In analogy to Angluin’s algorithm (see Theorem 2), an algorithm adapted this way
learns the unique minimal Moore machine for the target function in time polynomial
in this minimal Moore machine and the length of the longest counterexample returned
by the teacher. Thus, we obtain the following remark.

Remark 1 Given a teacher for a Moore machine computable function that can answer
membership and equivalence queries, the unique minimal Moore machine for this
function can be learned in time polynomial in the size of this minimal Moore machine
and the length of the longest counterexample returned by the teacher.

5.4 Actively Learning QDAs

In the case of actively learning QDAs, we assume that the teacher has access to a
QDA-acceptable language Lfor ⊆ Π∗ × F of formula words and answers queries as
follows.

Membership query. On a membership query, the learner provides a symbolic word
w ∈ Π∗, and the teacher returns the unique formula ϕ ∈ F with (w,ϕ) ∈ Lfor .
Note that such a formula word is guaranteed to exist since Lfor is a QDA-
acceptable language.

Equivalence query. On an equivalence query with a QDA A, the teacher checks
whether Lf (A) = Lfor is satisfied. If this is the case, he returns “yes”. If this is
not the case, then there exists a formula word (w,ϕ) such that (w,ϕ) ∈ Lf (A)⇔
(w,ϕ) /∈ Lfor (since both Lf (A) and Lfor contain a formula word of the form
(w′, ϕ′) for every w′ ∈ Π∗), and the teacher returns w as counterexample.

Quantified Data Automata for Linear Data Structures 19

Since a teacher for QDAs answers queries in the same manner as a teacher
for Moore machines and each QDA-acceptable language contains only finite many
different data formulas, we can view the learning of QDAs as the learning of Moore
machines. This allows us to adapt off-the-shelf learning algorithms, such as Angluin’s
or Rivest and Schapire’s algorithm, and we immediately obtain the following result.

Theorem 3 Given a teacher for a QDA-acceptable language of formula words that
can answer membership and equivalence queries, the unique minimal QDA for this
language can be learned in time polynomial in the size of this minimal QDA and the
length of the longest counterexample returned by the teacher.

6 Elastic Quantified Data Automata

Our aim is to translate the QDAs that are synthesized into decidable logics such as
the decidable fragment of Strand or the array property fragment. A property shared
by both logics is that they cannot test whether two universally quantified variables
are bounded distance away. We capture this type of constraint by the subclass of
elastic QDAs (EQDAs) that have been already informally described in Section 2.

Definition 6 (Elastic quantified data automata) A QDA A = (Q,Π, q0, δ, f)
is called elastic if each transition on b is a self-loop (i.e., whenever δ(q, b) = q′ is
defined, then q = q′).

It might seem that missing b-transitions enable EQDAs to test whether two
universally quantified variables, say y1 and y2, are bounded distance away (which
is the reason for the undecidability of the emptiness problem for QDAs). However,
because of the universal semantics of the automaton model, such a test is in fact not
possible (only if the variables are close to some pointer variable). This is discussed in
more detail in the translation from EQDAs to logic formulas in Section 7, where we
introduce the notion of irrelevant self-loop.

The learning algorithm that we use to synthesize QDAs does not construct EQDAs
in general. However, we can show that every QDA uniquely over-approximated by
a language of valuation words that can be accepted by an EQDA, as stated in the
following theorem. This result crucially relies on the particular structure that elastic
automata have, that forces a unique set of words to be added to the language in order
to make it elastic. We will refer to the construction in Definition 7 as elastification.

To ease the following definition, we introduce a few auxiliary notations: Given
a QDA A = (Q,Π, q0, δ, f), let Rb(q) be the set of state reachable from q via a
(possibly empty) sequence of transitions and Rb(S) =

⋃
q∈S Rb(q) for a set S ⊆ Q.

Moreover, we lift the transition function of A to sets of states: for S ⊆ Q and a ∈ Π,
let δ(S, a) =

⋃
q∈S δ(q, a).

Definition 7 (Elastification) Given a QDA A = (Q,Π, q0, δ, f), we define the
EQDA Ael = (Qel, Π, q

el
0 , δel, fel) by

– Qel = {S | S ⊆ Q};
– qel

0 = Rb(q0);
– fel(S) =

⊔
q∈S f(q); and

20 Pranav Garg et al.

– δel(S, a) =


Rb(δ(S, a)) if a 6= b;
S if a = b and δ(q, b) is defined for some q ∈ S;
undefined otherwise.

Note that this construction is similar to the usual powerset construction except
that we take the “b-closure” after applying the transition function of A. Moreover,
Ael loops in a state S as soon as a b-transition is defined for a state q ∈ S.

Theorem 4 For every QDA A one can construct an EQDA Ael such that

– Lval(A) ⊆ Lval(Ael); and
– for every EQDA B such that Lval(A) ⊆ Lval(B), the inclusion Lval(Ael) ⊆ Lval(B)

holds.

Proof We begin by observing that Ael is elastic by definition of δel. Moreover, a
standard induction over the length of valuation words v = a1 . . . an ∈ (Π×D)∗ shows
the following: if the run of A on v is

A : q0
a1−→ q1

a2−→ . . .
an−−→ qn,

then the run of Ael on v is

Ael : S0
a1−→ S1

a2−→ . . .
an−−→ Sn

such that qi ∈ Si for all i ∈ {1, . . . , n}. This implies Lval(A) ⊆ Lval(Ael) because the
implication f(q)→ f ′(S) holds by definition of f ′.

Let us now show that Lval(Ael) is in fact the most precise elastic over-approximation
of Lval(A). To this end, let B = (QB, Π, qB0 , δB, fB) be an EQDA with Lval(A) ⊆
Lval(B). Additionally, let v ∈ Lval(Ael). Thus, the task is to prove that v ∈ Lval(B)
holds, too.

Let S be the state reached by Ael on reading v and p be the state reached by
B on reading v. We now show that f(q) implies fB(p) for every q ∈ S. Once we
have established this, we obtain that fel(S) implies fB(p) because fel(S) is the least
formula in the formula lattice that is implied by all formulas f(q) for q ∈ S. Since
v ∈ Lval(Ael), the valuation word v satisfies fel(S) and, hence, also fB(p). Thus,
v ∈ Lval(B).

To prove that f(q) implies fB(p) for every q ∈ S, pick a state q ∈ S. Following
the definition of δel, we now construct a valuation word v′ ∈ (D ×Π)∗ that satisfies
the following properties:

– v′ ∈ Lval(A) holds.
– The run of A on v′ leads to q.
– The run of B on v′ leads to p.

In order to obtain v′, we insert symbols of the form (b, d) into v. Since the data
values at such positions do not occur together with variables, their actual value is
unimportant.

For the construction, let v = a1 · · · an and let

Ael : S0
a1−→ S1

a2−→ . . .
an−−→ Sn

be the run of Ael on v (so S = Sn). Let q ∈ S and let q′n := q. Since δel(Sn−1, an) = Sn
and q′n ∈ Sn, there is some state q′n−1 ∈ Sn−1 and an ∈ Sn such that δ(q′n−1, an) = qn,

Quantified Data Automata for Linear Data Structures 21

and A : qn
bin

−−→ q′n for some in ≥ 0. We continue this construction: if q′j ∈ Sj is
defined for j ∈ {1, . . . , n}, we construct q′j−1, qj and ij as above. For j = 0 we finally

pick i0 such that A : q0
bi0
−−→ q′0.

Let v′ = bi0a1b
i1a2b

i2 · · · anbin . By construction, the run of A on v′ leads to
q = q′n:

A : q0
bi0
−−→ q′0

a1−→ q1
bi1
−−→ q′1 . . .

an−−→ qn
bin

−−→ q′n

Since v′ is obtained from v by inserting b, the word v′ also satisfies the formula
f(q) and thus v′ ∈ Lval(A). It remains to show that the run of B on v′ leads to p.
Since B is elastic, the only possibility that v′ does not lead to p in B is a missing
b-loop at a position at which we inserted a non-empty sequence of b. However, since
Lval(A) ⊆ Lval(B), such a position cannot exist.

We conclude that f(q) implies fB(p) using the following argument: If f(q) does
not imply fB(p), then there exists an assignment of data values to the variables
y1, . . . , yn such that f(q) is satisfied but fB(p) is not. By changing the data values in
v′ accordingly, we can produce a valuation word that is accepted by A but not by
B. However, this contradicts the assumption Lval(A) ⊆ Lval(B). Thus, f(q) implies
fB(p). ut

7 Linear Data-structures to Words and EQDAs to Decidable Logics

In this section, we sketch briefly how to model arrays and lists as data words, and
describe how to convert EQDAs to quantified logical formulas in decidable logics.

7.1 Modeling Program Configurations as Data Words

We model program configurations consisting of scalar variables, pointer or index
variables,1 and one (or more) linear data structures—lists or arrays in our case—as
data words over a finite set of variables. The resulting data word is over the same
domain D as the data in the cells of the data structure.

To simplify our modeling, we replace each scalar variable with an auxiliary pointer
variable that points to a cell containing the data of the scalar variable. More precisely,
for each scalar variable, we introduce a new pointer variable and extend the data
structure with a new cell, which is located before the actual data structure begins
and contains the data of the scalar variable; the order in which scalar variables are
represented in the data structure is arbitrary but needs to be fixed. To be able to
access the data at these positions (recall that QDAs can only access the data at
position pointed to by universally quantified variables), we amend QDAs with a
register for each such pointer variable and extend the set F of formulas over which
the considered QDA works with the atom d(x) for each scalar variable x.

Let c be a program configuration over a linear data structure and a finite set PV
of pointer or index variables, and let Σ = 2PV . Roughly speaking, we model c as the
data word

uc = (a1, d1) . . . (an, dn) ∈ (Σ ×D)∗,

1 Index variables occur in the case of arrays and index into arrays.

22 Pranav Garg et al.

such that the i-th symbol of the data word corresponds to the i-th cell of the data
structure. In particular, the symbol ai ⊆ PV contains all pointer or index variables
referencing the i-th cell, and di is the data stored in that cell.

In the case of lists, some of the pointer variables might be null or point to
unallocated memory, which cannot be referenced. We capture this situation in the
data word by introducing an auxiliary pointer variable nil that points to a new cell
at the beginning of the list. All pointer variables that are null or point to unallocated
memory occur together with nil. The data value of the nil cell in the data word is
not important and can be set to an arbitrary element of D.

Similarly, we introduce two new index variables index_le_zero and index_geq_size
for arrays to capture index variables that are out-of-bounds (we assume that arrays
are indexed starting at 0). The variable index_le_zero occurs together with all index
variables that are less than zero, and index_geq_size occurs with those index variables
that are either equal to or exceed the size of the array. Let the set Aux contain all
auxiliary variables that may occur in our encoding.

To model configurations of programs that manipulate more than one data struc-
ture, one can use one of the following two approaches: the first approach concatenates
the data structures using a special pointer variable ?i to demarcate the end of the
i-th data structure; the second approach models several data structures as one sin-
gle combined data structure over an extended data domain consisting of several
components.

7.2 Converting EQDAs to Strand and the Array Property Fragment

We now describe a translation of an EQDA A = (Q,Π, q0, δ, f) into a formula ϕA
(in the decidable syntactic fragment of Strand, respectively in the Array Property
Fragment) such that the data word language Ldat(A) corresponds to the set of
program configurations that model ϕA. For brevity, we only consider the case of
EQDAs working over a single list or array; for multiple lists or arrays, the translation
is analogous.

Our translation is based on the notion of simple paths in EQDAs. A simple path
is a sequence

π = q0
a1−→ q1

a2−→ . . .
an−−→ qn

of states connected by transitions starting in the initial state such that δ(qi, ai+1) =
qi+1 is satisfies for all i ∈ [n], no state occurs more than once, and all pointer and
universally quantified variables occur exactly once; in particular, this implies ai 6= b.
Note that there exist only finitely many simple paths in an EQDA because each state
is allowed to occur at most once. We denote the set of all simple paths in the EQDA
A by PA.

To simplify the translation, we assume without restricting the class of formulas
represented by EQDAs that any EQDA A fulfills three structural properties:

1. Auxiliary variables, such as nil or scalar variables, which might have been intro-
duced by the encoding of Section 7.1, occur in the beginning of any simple path
in the exact same order. Although the exact order is unimportant, we fix one for
the sake of simplicity: scalar variables occur first (in some fixed order), followed
by nil in the case of lists, respectively index_le _zero and index_geq _size in the
case of arrays.

Quantified Data Automata for Linear Data Structures 23

. . . q q′ . . .(b, y)

b

(a) An irrelevant self-loop in q.

. . . q q′ . . .(b, y)

b

(b) An irrelevant self-loop in q′.

Fig. 2: Base cases of the inductive definition of irrelevant self-loops.

2. Any simple path in A along which a universally quantified variable occurs together
with auxiliary variables leads to a dedicated state labeled with the formula true.
This means that the acceptance of a data word depends only on such valuations
where no universally quantified variable occurs together with auxiliary variables.
Since auxiliary variables were introduced for technical reasons only, valuation
words in which a universally variable occurs together with auxiliary variables
should, therefore, not influence the formula ϕA.

3. There are no irrelevant self-loops in A, which we define inductively as follows. Let
π be a simple path in A, and let q, q′ be two states on π such that q′ is the direct
successor of q and the transition connecting q and q′ is δ(q, (b, y)) = q′. If q has
a self-loop on b (i.e., δ(q, b) = q), then we define this self-loop inductively to be
irrelevant on π if either q′ has no self-loop on b or if this self-loop is irrelevant
on π; the former situation is sketched in Figure 2a. Symmetrically, we define a
self-loop on b at q′ inductively as irrelevant on π if either q has no self-loop on b
or this self-loop is irrelevant on π (see Figure 2b).
If a self-loop is irrelevant on π, it cannot contribute to the acceptance of a data
word. To see why, consider two valuation words

v = . . . (b, y)b . . . and v′ = . . . b(b, y) . . .

with dw(v) = dw(v′) (i.e., v and v′ only differ in the valuation of the universally
quantified variables). Moreover, assume that v is accepted along π using an
irrelevant self-loop in q′ (see Figure 2b). In this situation, A rejects v′ since q has
no transition on b. Thus, A rejects dw(v).
The example above shows that one can safely remove irrelevant loops from an
EQDA without changing the accepted language of data words. However, since
being an irrelevant self-loop is a property depending on a path, it can happen
that there are paths p, p′ such that a self-loop in a state q is irrelevant on p but
not on p′. To handle such situations, we remove self-loops only temporary: since
our translation considers every simple path individually, we remove irrelevant
self-loops on the currently processed path only for the sake of translation and
restore them once the processing of this path has finished.

EQDAs can check properties of the beginning and the end of a data structure, such
as whether a pointer variable points to the head or tail of a list. In order to capture
such properties, we use the constants 0 and size in the case of arrays, respectively
head and tail in the case of lists, that point to the beginning and the end of the
considered data structure. Note that these constants can easily be expressed in both
the Array Property Fragment and the syntactic decidable fragment of Strand.

We are now ready to describe the actual translation. Roughly speaking, our
translation considers each simple path of an EQDA individually, records the structural

24 Pranav Garg et al.

constraints of the variables along the path, and relates these constraints to the data
formula of the final state of the path. By doing so, we construct a path formula ϕπ
for each simple path π in A. The resulting formula ϕA is then the union of all such
path formulas and an additional subformula that captures the valuation words not
accepted by A. Since there exists only finitely many simple path in A, the resulting
formula is finite.

More precisely, let π = q0
a1−→ q1

a2−→ . . .
an−−→ qn be a simple path in A with

ai ∈ Σ × (Y ∪ {−}) and ai 6= b for i ∈ {1, . . . , n}. The path formula corresponding
to π is the implication

ϕπ := ψπ → χπ,

where the antecedent ψπ (which we define shortly) serves as a guard that captures
the relative positions of the variables along π and the consequent χπ = f(qn) is the
data formula decorating the final state qn of π (in the case of a translation into the
Array Property Fragment, an overapproximation of f(q) might be necessary).

We define the path guard ψπ as follows: at each state qi on the path, we construct
local constraints, which describe how individual variables encoded in the incoming
and outgoing transitions of qi are related, and collect them in the set Ci; the path
guard then is the conjunction

ψπ :=
n∧
i=1

∧
ψ∈Ci

ψ.

For the construction of path guards, we use the following two notations: First, we
use the notation qi−1

ai−→ qi ∈ π, respectively qi−1
ai−→ qi

ai+1−−−→ qi+1 ∈ π, to denote
parts of the simple path π = q0

a1−→ q1
a2−→ . . .

an−−→ qn. Second, we use the input-
symbol a = (σ, y) ∈ Σ× (Y ∪{−}) and the set (σ ∪{y}) \ {−} of all variables (either
pointer variables or universally quantified variables) occurring in a interchangeably;
for instance, we write x ∈ a to denote that the variable x occurs in a.

We divide the construction of path guards into two parts: The first part (i.e.,
Cases 1 and 2 below) covers the beginning of the path where pointer variables occur
together with auxiliary variables, such as nil; recall that our encoding of Section 7.1
asserts that auxiliary variables occur always in the beginning of valuation words (and,
correspondingly, in simple paths). The second part (i.e., Cases 3 to 6 below) deals
with the remainder of the path, which is related to the actual data structure. The
local constraints at state qi are constructed according to the following (nonexclusive)
case distinction:

Case 1: qi−1
ai−→ qi ∈ π and ai ∩Aux 6= ∅

Let z ∈ ai ∩Aux be the unique auxiliary variable.
– If z models a scalar variable, we set Ci ← Ci∪{x = z} for all x ∈ ai \{z}.
(This case covers the second assumed structural property of EQDAs,
described on Page 23. Note that x can only be a universally variable and
the state qn of the simple path is labeled with the data formula true.)

– If z = nil, we set Ci ← Ci ∪ {x = nil} for all x ∈ ai \ {z}.
– If z = index _le _size, we set Ci ← Ci ∪ {x < 0} for all x ∈ ai \ {z}.
– If z = index _geq _size, we set Ci ← Ci ∪ {x ≥ size} for all x ∈ ai \ {z}.

Case 2: qi−1
ai−→ qi

ai+1−−−→ qi+1 ∈ π, ai ∩Aux 6= ∅, and ai+1 ∩Aux = ∅

Quantified Data Automata for Linear Data Structures 25

This case covers the boundary between the first and second part of a sim-
ple path (i.e., processing the actual data structure starts at qi). Here, we
distinguish two cases:
– If δ(qi, b) is undefined, we set Ci ← Ci ∪ {x = 0} for all x ∈ ai+1 in the

case of arrays, respectively Ci ← Ci ∪ {x = head} for all x ∈ ai+1 in the
case of lists.

– If δ(qi, b) = qi, we set Ci ← Ci ∪ {0 ≤ x} for all x ∈ ai+1 in the case of
arrays, respectively Ci ← Ci ∪ {head →∗ x} for all x ∈ ai+1 in the case
of lists.

Cases 3 to 6 below only apply if no auxiliary variables occur in the incoming or
outgoing transitions. Note that such situations indeed occur since we assume that Y
contains at least one variable (which occurs on every simple path after all auxiliary
variables).

Case 3: qi−1
ai−→ qi ∈ π

For all x, x′ ∈ ai with x 6= x′, we set Ci ← Ci ∪ {x = x′}.

Case 4: qi−1
ai−→ qi

ai+1−−−→ qi+1 ∈ π and δ(qi, b) = qi
Let x1 ∈ ai and x2 ∈ ai+1. In the case of arrays, we consider two cases:
– If x1 /∈ Y or x2 /∈ Y , then we set Ci ← Ci ∪ {x1 < x2}.
– If x1 ∈ Y , x2 ∈ Y , and (ai∪ai+1)∩Σ = ∅ (i.e., only universally quantified

variables occur), then the Array Property Fragment forbids two adjacent
universally quantified variables to be related by the relation <; in this
case, we set Ci ← Ci ∪ {x1 ≤ x2} and χπ ← χπ ∨ (d(x1) = d(x2)). At
this point, the translation does not capture the exact semantics of the
EQDA (we comment on this shortly). Note that ≤ is an elastic relation.

In the case of lists, we set Ci ← Ci ∪{x1 →+ x2} where →+ is the transitive
closure of the successor relation →. Note that →+ is an elastic relation.

Case 5: qi−1
ai−→ qi

ai+1−−−→ qi+1 ∈ π and δ(qi, b) is undefined
Let x1 ∈ ai and x2 ∈ ai+1. We distinguish two cases:
– Let x1 /∈ Y or x2 /∈ Y . In the case of arrays, we set Ci ← Ci∪{x2 = x1+1}.

In the case of lists, we set Ci ← Ci ∪ {x1 → x2}.
– Let x1 ∈ Y and x2 ∈ Y . Since both Strand and the Array Property

Fragment forbid expressing that two universally quantified variables are
a fixed distance away, we express their relation indirectly: we identify a
state q on the path π that is closest to qi and has a transition containing
a pointer variable p ∈ PV . Since A does not contain any irrelevant self-
loops, the subpath from qi to q has no self-loops. Thus, we can constrain
the universally quantified variables at qi to be a fixed distance away
from the pointer variable p. For a translation into the Array Property
Fragment, we achieve this using arithmetic on the pointer variables.
For a translation into the decidable syntactic fragment of Strand, we
obtain the same effect by existentially quantifying monadic predicates
that track the distance of the universally quantified variables at qi to the
pointer variable p (which is allowed in the decidable syntactic fragment
of Strand). Since distance between q and qi is bounded, a finite number
of such predicates suffices.

26 Pranav Garg et al.

Case 6: qn−1
an−−→ qn ∈ π

In this case, qn is the last state of π and an the last transition. We distinguish
two cases:
– If δ(qn, b) is undefined, we set Cn ← Cn ∪ {x = size− 1} for all x ∈ ai in

the case of arrays, respectively Cn ← Cn ∪ {x = tail} for all x ∈ ai in
the case of lists.

– If δ(qn, b) = qn, we set Cn ← Cn ∪ {x < size} for all x ∈ ai in the case
of arrays, respectively Cn ← Cn ∪ {x→∗ tail} for all x ∈ ai in the case
of lists.

Since the Array Property Fragment lacks the ability to check whether two univer-
sally quantified variables are different, Case 4 needs to introduce an overapproximation
of the real constraints along a simple path if two universally quantified variables,
say y and y′, are adjacent at a state with a self-loop on b (i.e., the path guard is
incorrectly satisfied even if y = y′ holds). In order to compensate for this, we amend
the formula χπ by disjointly adding the constraint d(y) = d(y′), which ensures that
the path formula is satisfied if y = y′ holds (since y = y′ implies d(y) = d(y′)). This
way, the path formula checks the structural and data constraints of the path if the
valuation satisfies y1 < · · · < yk, but also when universally quantified variables are
equal (which cannot be checked by an EQDA due to fact that the input alphabet of
EQDAs requires universally quantified variables to be at different position). Note
that a path formula with such an approximation is imprecise in general.

The complete translation functions as follows: It collects the sets Ci along every
simple path π ∈ PA and constructs the formulas ψπ and χπ. For a translation into
the decidable syntactic fragment of Strand, it returns the formula

ϕA := ∀y1 : . . . ∀yk :

[(∧
π∈PA

ψπ → χπ︸ ︷︷ ︸
ϕsp

)
∧

([
(head →∗ y1 →+ · · · →+ yk →∗ tail) ∧ ¬

(∨
π∈PA

ψπ

)]
→ false︸ ︷︷ ︸

ϕ¬sp

)]
;

for a translation into the Array Property Fragment, it returns

ϕA := ∀y1 : . . . ∀yk :

[(∧
π∈PA

ψπ → χπ︸ ︷︷ ︸
ϕsp

)
∧

([
(0 ≤ y1 ≤ · · · ≤ yk < size) ∧ ¬

(∨
π∈PA

ψπ

)]
→

∨
y,y′∈Y,
y 6=y′

d(y) = d(y′)

︸ ︷︷ ︸
ϕ¬sp

)]
.

The subformula ϕsp is the conjunction of all path formulas whereas the subformula
ϕ¬sp captures valuation words that have the right ordering of the universally quan-
tified variables but do not admit a run of A (i.e., that are rejected by A). As in

Quantified Data Automata for Linear Data Structures 27

the case of path formulas, the Array Property Fragment formula ϕ¬sp only approxi-
mates the correct semantics of A. Again, the disjunction constituting the consequent
compensates for the necessary overapproximation in the antecedent (y1 ≤ · · · ≤ yk
instead of y1 < · · · < yk).

Since the decidable syntactic fragment of Strand allows negating atomic formulas,
ϕA is in this fragment. Though the Array Property Fragment also allows negation
over atomic formulas that relate two pointer variables or a pointer variable and a
universally quantified variable, negation of an atomic formula of the form y ≤ y′ is
not allowed [7]. However, since we assume both a fixed variable ordering on Y along
simple paths and that all other paths with a different ordering lead to the formula
true, we can remove formulas of the form ¬(y ≤ y′) from ¬

(∨
π∈PA

ψπ
)
; as before,

considering a different ordering of the variables in Y is not necessary because these
variables are universally quantified. After removing such subformulas, the formula
ϕA falls into the Array Property Fragment.

When we apply our translation to an EQDA to obtain a formula in the syntactic
decidable fragment of Strand over lists, the obtained formula exactly characterizes
the set of program configurations that correspond to the language of data words
accepted by the given EQDA. However, due to the necessary abstractions introduced
by our translation into the Array Property Fragment, the formula obtained from
translating the EQDA over arrays might not characterize the semantics of the given
EQDA exactly. However, we can at least assert that all data words accepted by this
EQDA correspond to a program configuration satisfying the formula.

To make this intuition precise, let us introduce the following notations: Given a
program configuration c, let (c) denote the natural translation of c into an interpre-
tation for formulas in the Array Property Fragment, respectively in the decidable
syntactic fragment of Strand.2 Moreover, let (c, y1, . . . , yk) denote the interpretation
(c) in which the universally quantified variables are fixed to the values y1, . . . , yk.

The following theorem now summarizes the main result of our translation.

Theorem 5 Let A be an EQDA, c a program configuration, uc the data word cor-
responding to c, and ϕA the formula obtained after the translation (either in the
decidable syntactic fragment of Strand or the Array Property Fragment).
a) For a translation into the syntactic decidable fragment of Strand, the equivalence

uc ∈ Ldat(A) if and only if (c) |= ϕA

holds.
b) For a translation into the Array Property Fragment, the implication

uc ∈ Ldat(A) implies (c) |= ϕA

holds.

The abstraction along simple paths with y < y′ introduced by our translation
is the reason why Theorem 5 only holds in one direction for the Array Property
Fragment. For this reason, we first prove Theorem 5 for the translation into the
decidable syntactic fragment of Strand; based on the insight gained in the proof, it
becomes much easier to prove Theorem 5 for the translation into the Array Property
Fragment.

2 We make sure that the type of an interpretation (i.e., whether it is for formulas in the
Array Property Fragment or in the decidable syntactic fragment of Strand) is always clear from
the context.

28 Pranav Garg et al.

Decidable syntactic fragment of Strand The pivotal fact on which Theorem 5 relies
is that the path guard ψπ exactly captures the structural constraints along π. The
next lemma formalizes this intuition.

Lemma 1 Let A be an EQDA over the finite set PV of pointer variables and the
finite, nonempty set Y of universally quantified variables, π a simple path in A,
and ψπ the corresponding path guard in the decidable syntactic fragment of Strand.
Moreover, let c be a program configuration, y1, . . . , yk a valuation of Y , and v the
valuation word modeling c and y1, . . . , yk. Then, the following equivalence holds:

the unique run of A on v is along π if and only if (c, y1, . . . , yk) |= ψπ.

Proof We split the proof into two parts: we first show the direction from left to
right and subsequently the reverse direction. The direction from left to right is
straightforward and simply exploits the fact we only add such local constraints to
a path guard that are obviously satisfied along the given path. The direction from
right to left, however, is more elaborate to prove.

From left to right Let
π = q0

a1−→ q1
a2−→ . . .

an−−→ qn

a simple path in A and assume that the unique run of A on v is along π. Since the
path guard is the conjunction

∧n
i=1
∧
ψ∈Ci

ψ of all local constraints along π, it is
enough to prove that (c, y1, . . . , yk) satisfies each individual local constraint. To this
end, let ψ be a local constraint, say constructed at state qi of π.

In order to show (c, y1, . . . , yk) |= ψ, we have to distinguish due to which case of
the translation the constraint ψ has been constructed. However, since most cases are
similar, we do not give a thorough proof here but exemplary consider Case 4.

If ψ has been introduced in Case 4, then ψ := x1 →+ x2 with x1 ∈ ai and
x2 ∈ ai+1. Since the run of A on v is along π, we know that all variables x ∈ ai occur
before the variables x′ ∈ ai. Thus, (c, y1, . . . , yk) satisfies x→+ x′ for all such x, x′.
This in turn means (c, y1, . . . , yk) |= ψ.

From right to left Let
π = q0

a1−→ q1
a2−→ . . .

am−−→ qm

be a simple path in A and (c, y1, . . . , yk) a model of ψπ. Towards a contradiction,
assume that the run of A on v is along a different simple path, say

π′ = q0
a′

1−→ q′1
a′

2−→ . . .
a′

n−−→ q′n.

Then, there exists a position i ∈ N+ at which both paths diverge; that is, aj = a′j
and qj = q′j for all j ∈ [i], ai 6= a′i, and qi 6= q′i. Note that such a position always
exists because the states of A are “typed” (i.e., A has to remember which variable it
has already read). Figure 3 depicts such a situation.

We observe that all input symbols along the paths π and π′ are different from b
because A is elastic. Thus, if ai 6= a′i, then there exists a variable x ∈ PV ∪ Y that is
missing in exactly one of ai and a′i (i.e., x ∈ ai if and only if x /∈ a′i). Without loss of
generality, let us assume x ∈ ai and x /∈ a′i.

Since a′i 6= b, there also exists a variable x′ ∈ a′i that is different from x. Moreover,
since π′ is a simple path (which implies that all pointer and universally quantified

Quantified Data Automata for Linear Data Structures 29

q0

qi

q′i

qm

q′n

a1 . . . ai−1

a′1 . . . a
′
i−1

ai

a′i

ai+1 . . . am

a′i+1 . . . a
′
n

π

π′

x ∈

x′ ∈

x /∈, x′ ∈ x ∈

Fig. 3: Two diverging simple paths p, p′.

variables occur exactly once), the variable x also occurs in π′, but only in one of the
inputs a′i+1, . . . , a

′
n; note that x′ might or might not occur together with x on π.

We now distinguish two cases:

1. An auxiliary variable, say z, occurs in the input-symbol ai on π; that is, qi belongs
to the first part of π. We first observe that x cannot be an auxiliary variable
because we assume that auxiliary variables appear never together and always in
the same, fixed order. Thus, the following two cases remain:
(a) The variable x occurs on π′ together with an auxiliary variable, say z′, that

is different from z. Since we assume the run of A on v to be along π′, this
means (c, y1, . . . , yk) |= x = z′. Consequently, (c, y1, . . . , yk) 6|= x = z because
x = z ∧ x = z′ is unsatisfiable if z 6= z′. However, the path guard ψπ contains
the local constraint x = z (see Case 1). Thus, (c, y1, . . . , yk) 6|= ψπ, which
yields a contradiction.

(b) The variable x does not occur together with an auxiliary variable on π′. Since
we assume the run of A on v to be along π′, this means (c, y1, . . . , yk) |=
head →∗ x. Consequently, (c, y1, . . . , yk) 6|= x = z because z is an auxiliary
variable that occurs before head. However, the path guard ψπ contains the
local constraint x = z (again, see Case 1). Thus, (c, y1, . . . , yk) 6|= ψπ, which
yields a contradiction.

2. The input-symbol ai on π does not contain an auxiliary variable; that is, qi
belongs to the second part of π. Since we assume the run of A on v to be along
π′, the variable x′ points to a cell that is located before the cell pointed to by x.
Hence, (c, y1, . . . , yk) |= x′ →+ x. Consequently, (c, y1, . . . , yk) 6|= x→∗ x′ because
x→∗ x′ ∧ x′ →+ x is unsatisfiable. However, the path guard ψπ implies x→∗ x′
(see Cases 4 and 5) although it might not contain this subformula explicitly. Thus,
(c, y1, . . . , yk) 6|= ψπ, which yields the desired contradiction.

ut

Using Lemma 1, we can now prove Part (a) of Theorem 5.

Proof (of Theorem 5(a)) Let A be an EQDA over PV and Y , y1 ≺ · · · ≺ yk the
predetermined order in which the universally quantified variables have to occur in

30 Pranav Garg et al.

the input of A, and ϕA the formula in the decidable syntactic fragment of Strand
resulting from our translation. In addition, let c be a program configuration and uc
the data word modeling c.

We first show the direction from left to right (i.e., uc ∈ Ldat(A) implies (c) |= ϕA)
and subsequently the reverse direction (i.e., (c) |= ϕA implies uc ∈ Ldat(A)).

From left to right Let uc ∈ Ldat(A). In order to prove that c satisfies ϕA :=
∀y1 : . . . ∀yk : (ϕsp ∧ ϕ¬sp), we fix an arbitrary valuation y1, . . . , yk of Y and show

(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that head →∗ y1 →+ · · · →+ yk →∗ tail does not hold, we first
observe that (c, y1, . . . , yk) does not satisfy any path guard because each path guard
implies head →∗ y1 →+ · · · →+ yk →∗ tail. Hence, (c, y1, . . . , yk) |= ϕsp since
the antecedent of each path formula is unsatisfied. Moreover, (c, y1, . . . , yk) does
not satisfy the antecedent of ϕ¬sp and, consequently, (c, y1, . . . , yk) |= ϕ¬sp. Thus,
(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that head →∗ y1 →+ · · · →+ yk →∗ tail holds, let v be the valuation
word resulting from extending uc with the valuation y1, . . . , yk (which implies dw(v) =
uc). We proceed the proof by first showing that (c, y1, . . . , yk) satisfies ϕsp and
subsequently that it satisfies ϕ¬sp.

1. Since uc ∈ Ldat(A), the valuation word v is also accepted by A, say along the
simple path π. This particularly means that the unique run of A on v ends in a
configuration (q, r) with r |= f(q). By Lemma 1, we know (c, y1, . . . , yk) |= ψπ.
Moreover, since f(q) = χπ and r |= f(q), we also know (c, y1, . . . , yk) |= χπ and,
thus, (c, y1, . . . , yk) |= ψπ → χπ. On the other hand, Lemma 1 asserts that no
other path guard is satisfied by (c, y1, . . . , yk). Thus, (c, y1, . . . , yk) |= ϕsp.

2. The fact that (c, y1, . . . , yk) |= ψπ holds (see above) implies (c, y1, . . . , yk) 6|=
¬(
∨
π∈PA

ψπ). Hence, the antecedent of ϕ¬sp is not satisfied and, therefore,
(c, y1, . . . , yk) |= ϕ¬sp.

Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.
In total, uc ∈ Ldat(A) implies (c) |= ϕA.

From right to left Let uc be a data word with uc /∈ Ldat(A) and c the corresponding
program configuration. We need to show that c does not satisfy ϕA.

Since uc /∈ Ldat(A), there exists a valuation y1, . . . , yk and a corresponding
valuation word v (i.e., uc extended by y1, . . . , yk results in v) such that v /∈ Lval(A).
This valuation word is rejected either

1. due to a missing transition; or
2. due to the fact that the run of A on v ends in a configuration (q, r) with r 6|= f(q).

In the first case, the run of A on v does not lead along a simple path. By
Lemma 1, this implies (c, y1, . . . , yk) 6|= ψπ for every π ∈ PA. Hence, (c, y1, . . . , yk) |=
¬(
∨
π∈PA

ψπ). Since we assume that A accepts all valuation words that violate the
fixed order of the universally quantified variables or where at least one of these
variables points to nil, we know that (c, y1, . . . , yk) |= head →∗ y1 →+ · · · →+ yk →∗
tail holds. Thus, (c, y1, . . . , yk) 6|= ϕ¬sp and, consequently, c 6|= ϕA.

Quantified Data Automata for Linear Data Structures 31

In the second case, the run of A on v leads along a simple path, say π, ending in
the configuration (q, r). By Lemma 1, this implies (c, y1, . . . , yk) |= ψπ. However, since
r 6|= f(q) = χπ, we have (c, y1, . . . , yk) 6|= χπ. Thus, (c, y1, . . . , yk) 6|= ϕsp (because
(c, y1, . . . , yk) 6|= ψπ → χπ) and, consequently, c 6|= ϕA.

In total, uc /∈ Ldat(A) implies (c) 6|= ϕA (i.e., (c) |= ϕA implies uc ∈ Ldat(A)). ut

Array Property Fragment The approximation in Case 4 of our translation is the
reason why Theorem 5 holds only in one direction in the case of a translation into
the Array Property Fragment. In order to prove this direction, we first show that the
path guard ψπ overapproximates the structural constraints of π. The next lemma
formalizes this.

Lemma 2 Let A be an EQDA over the finite set PV of pointer variables and the
finite, nonempty set Y of universally quantified variables, π a simple path in A, and
ψπ the corresponding path guard in the Array Property Fragment. Moreover, let c
be a program configuration, y1, . . . , yk a valuation of Y , and v the valuation word
modeling c and y1, . . . , yk. Then, the following implication holds:

if the unique run of A on v is along π, then (c, y1, . . . , yk) |= ψπ.

Proof One can prove Lemma 2 in the same way as Lemma 1 (see Page 28): again, we
consider each local constraint ψ of a path guard individually and show (c, y1, . . . , yk) |=
ψ. In fact, we can reuse the proof of Lemma 1 except for a slightly different treatment
of Case 4, which we sketch below.

Assume that ψ has been added at state qi of the simple path π = q0
a1−→ . . .

an−−→ qn,
and let x1 ∈ ai and x2 ∈ ai+1.

If x1 /∈ Y or x2 /∈ Y , then this situation matches Case 4 of the proof of Lemma 1
and immediately yields the desired result.

If x1 ∈ Y , x2 ∈ Y , and both variables do not occur together with a pointer
variable, then the translation adds ψ := x1 ≤ x2 instead of the “correct” constraint
x1 < x2. However, we know that all variables x ∈ ai occur before the variables
x′ ∈ ai+1 because the run of A on v is along π. Thus, (c, y1, . . . , yk) |= x < x′ for all
such x, x′, which implies (c, y1, . . . , yk) |= x1 ≤ x2 (i.e., (c, y1, . . . , yk) |= ψ). ut

We can now prove Part (b) of Theorem 5.

Proof (of Theorem 5(b)) Let A be an EQDA over PV and Y , y1 ≺ · · · ≺ yk the
predetermined order in which the universally quantified variables have to occur in
the input of A, and ϕA the formula in the Array Property Fragment resulting from
our translation. Moreover, let c be a program configuration and uc the data word
modeling c. Finally, assume uc ∈ Ldat(A).

We have to show that (c) is a model of ϕA. This proof is similar to the direction
from left to right of the proof of Theorem 5(a): we again fix an arbitrary valuation
y1, . . . , yk of Y and show

(c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size does not hold, we again observe
that (c, y1, . . . , yk) does not satisfy any path guard because each path guard implies
0 ≤ y1 ≤ · · · ≤ yk < size. Hence, (c, y1, . . . , yk) |= ϕsp since the antecedent of each
path formula is unsatisfied. Moreover, (c, y1, . . . , yk) does not satisfy the antecedent
of ϕ¬sp and, consequently, (c, y1, . . . , yk) |= ϕ¬sp. Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.

In the case that 0 ≤ y1 ≤ · · · ≤ yk < size holds, we distinguish two cases:

32 Pranav Garg et al.

1. All universally quantified variables are different; that is, yi 6= yj holds for all
i, j ∈ {1, . . . , k} with i 6= j. In this case, let v be the valuation word resulting
from extending uc with the valuation y1, . . . , yk. We proceed the proof by first
showing that (c, y1, . . . , yk) satisfies ϕsp and subsequently that it satisfies ϕ¬sp.
(a) Since uc ∈ Ldat(A), the valuation word v is also accepted by A, say along the

simple path π. By Lemma 2, we know that then (c, y1, . . . , yk) |= ψπ holds.
Since v ∈ Lval(A), the registers satisfy the data formula of the final state of
π. Thus, (c, y1, . . . , yk) |= χπ and, consequently, (c, y1, . . . , yk) |= ψπ → χπ.
To complete this case, we argue that there exists no other path π′ ∈ PA
with π′ 6= π and (c, y1, . . . , yk) |= ψπ′ . Towards a contradiction, assume the
contrary and let π′ such a simple path. By using arguments similar to those
in the direction from right to left of the proof of Lemma 1, one can show
that this can only happen due to an overapproximation of the form yi ≤ yj
(rather than yi < yj). This, in turn, implies that there exists i, j ∈ {1, . . . , k}
with i < j and yi = yk, which contradicts the assumption that all universally
quantified variables are different.
In total, (c, y1, . . . , yk) satisfies the path formula of each simple path. Hence,
(c, y1, . . . , yk) |= ϕsp.

(b) Since uc ∈ Ldat(A), we know that there exists a simple path π ∈ PA such
that (c, y1, . . . , yk) |= ψπ (see above). Thus, (c, y1, . . . , yk) 6|= ¬(

∨
π∈PA

ψπ)
because removing subformulas of the form ¬(y ≤ y′) from a path guard
potentially results in more interpretations satisfying it and, thus, less satisfying
its negation. This implies (c, y1, . . . , yk) |= ϕ¬sp since we assume 0 ≤ y1 ≤
· · · ≤ yk < size.

Thus, (c, y1, . . . , yk) |= ϕsp ∧ ϕ¬sp.
2. There exist i, j ∈ {1, . . . , k} such that i < j and yi = yj . In this case, there

might be a simple path π ∈ PA such that (c, y1, . . . , yk) |= ψπ. Since universally
quantified variables never occur together on a simple path (due to the choice of
the input alphabet of QDAs), (c, y1, . . . , yk) can only satisfy ψπ due to the overap-
proximation yi ≤ yj (rather than yi < yj) introduced by Case 4 of our translation.
This means that the formula χπ is constructed by taking the disjunction of the for-
mulas f(q) (assuming that q is the final state of π), d(yi) = d(yj), and potentially
other formulas of the form d(y) = d(y′) for y, y′ ∈ Y . Thus, (d(yi) = d(yj))→ χπ.
Since yi = yj , we have d(yi) = d(yj) and, hence, (c, y1, . . . , yk) |= χπ. This, in
turn, means (c, y1, . . . , yk) |= ψπ → χπ. Since these arguments are true for all
simple paths π′ ∈ PA for which (c, y1, . . . , yk) |= ψπ′ holds, (c, y1, . . . , yk) |= ϕsp.
On the other hand, (c, y1, . . . , yk) |= ϕ¬sp because (c, y1, . . . , yk) satisfies the
consequent of ϕ¬sp due to the equality yi = yj . Thus, (c, y1, . . . , yk) |= ϕsp ∧ϕ¬sp.

In total, uc ∈ Ldat(A) implies (c) |= ϕA. ut

8 A Case Study on Learning Invariants of Linear Data Structures

We apply the active learning algorithm for QDAs, described in Section 5, in a passive
learning framework in order to learn quantified invariants over lists and arrays from
a finite set of samples S obtained from dynamic test runs. In this section, we present
the implementation details and the experimental results of our evaluation.

Quantified Data Automata for Linear Data Structures 33

Implementing the Teacher:

In an active learning algorithm, the learner can query the teacher for membership
and equivalence queries. In order to build a passive learning algorithm from a sample
S, we build a teacher, who will use S to answer the questions of the learner, ensuring
that the learned set contains S.

The teacher knows S and wants the learner to construct a small automaton that
includes S; however, the teacher does not have a particular language of data words in
mind, and hence cannot answer questions precisely. We build a teacher who answers
queries as follows: On a membership query for a word w, the teacher checks whether
w belongs to S and returns the corresponding data formula. The teacher has no
knowledge about the membership for words which were not realized in test runs,
and she rejects these. She also does not know whether the formula she computes on
words that get manifest can be weaker; but she insists on that formula. By doing
these, the teacher errs on the side of keeping the invariant semantically small. On an
equivalence query, the teacher just checks that the set of samples S is contained in
the conjectured invariant. If not, the teacher returns a counter-example from S.

Note that the passive learning algorithm hence guarantees that the automaton
learned will be a superset of S, and the running time of the algorithm is guaranteed
to be polynomial in the size of the learned automaton. We show the efficacy of this
passive learning algorithm using experimental evidence later in this section.

Implementation of a Passive Learner of Invariants:

We first take a program and using a test suite, extract the set of concrete data-
structures that get manifest at loop-headers (for learning loop invariants) and at
the beginning and end of functions (for learning pre/post-conditions). The test suite
was generated by enumerating all possible arrays/lists of a small bounded length,
and with data-values in them from a small bounded domain. We then convert the
data-structures into a set of formula words, as described below, to get the set S on
which we perform passive learning.

We first fix the formula lattice F over data formulas to be the Cartesian lattice of
atomic formulas over relations {=, <,≤}. This is sufficient to capture the invariants
of many interesting programs such as sorting routines, searching a list, in-place
reversal of sorted lists, etc. Using lattice F , for every program configuration which
was realized in some test run, we generate a formula word for every valuation of the
universal variables over the program structures. We represent these formula words
as a mapping from the symbolic word, encoding the structure, to a data formula in
the lattice F . If different inputs realize the same structure but with different data
formulas, we associate the symbolic word with the join of the two formulas.

Implementing the Learner:

We used the libALF library [4] as an implementation of the active learning algo-
rithm [3]. We adapted its implementation to our setting by modeling QDAs as Moore
machines. If the learned QDA is not elastic, we elastify it as described in Section 6. The
result is then converted to a quantified formula over Strand or the APF and we check

34 Pranav Garg et al.

if the learned invariant was adequate using a constraint solver. In the case of arrays, the
APF formula presented in Section 7 overapproximates the semantics of the EQDA. To
obtain better results in the implementation, we used a more precise formula in which
ϕ¬sp is replaced by the formula [(0 ≤ y1 < · · · < yk < size) ∧ ¬(

∨
π∈PA

ψπ)]→ false.
Although this formula does not fall in the APF, the constraint solver was able to
handle it in our experiments.

Program LOC #Test Tteach # # # Elasti Tlearn
inputs (s) Eq. Mem. states ified? (s)

array-find 25 310 0.05 2 121 8 no 0.00
array-copy 25 7380 1.75 2 146 10 no 0.00
array-compare 25 7380 0.51 2 146 10 no 0.00
insertion-sort-outer 30 363 0.19 3 305 11 no 0.00
insertion-sort-innner 30 363 0.30 7 2893 23 yes 0.01
selection-sort-outer 40 363 0.18 3 306 11 no 0.01
selection-sort-inner 40 363 0.55 9 6638 40 yes 0.05

list-sorted-find 20 111 0.04 6 1683 15 yes 0.01
list-sorted-insert 30 111 0.04 3 1096 20 no 0.01
list-init 20 310 0.07 5 879 10 yes 0.01
list-max 25 363 0.08 7 1608 14 yes 0.00
list-sorted-merge 60 5004 10.50 7 5775 42 no 0.06
list-partition 70 16395 11.40 10 11807 38 yes 0.11
list-sorted-reverse 25 27 0.02 2 439 18 no 0.00
list-bubble-sort 40 363 0.19 3 447 12 no 0.01
list-fold-split 35 1815 0.21 2 287 14 no 0.00
list-quick-sort 100 363 0.03 1 37 5 no 0.00
list-init-complex 80 363 0.05 1 57 6 no 0.01

lookup_prev 25 111 0.04 3 1096 20 no 0.01
add_cachepage 40 716 0.19 2 500 14 no 0.01
Glib sort (merge) 55 363 0.04 1 37 5 no 0.00
Glib insert_sorted 50 111 0.04 2 530 15 no 0.01
devres 25 372 0.06 2 121 8 no 0.00
rm_pkey 30 372 0.06 2 121 8 no 0.00
GNU Coreutils sort 2500 1 File 0.00 17 4996 5 yes 0.07

Learning Function Pre-conditions

list-sorted-find 20 111 0.01 1 37 5 no 0.00
list-init 20 310 0.02 1 26 4 no 0.00
list-sorted-merge 60 329 0.06 3 683 19 no 0.01

Table 1: Experimental Results.

Experimental Results:

We evaluate our approach on a suite of programs for learning invariants and precon-
ditions. Our experimental results are tabulated in Table 1 3. For every program, we
report the number of lines of C code, the number of test inputs and the time (Tteach)

3 The benchmark suite and the source code of our implementation is available at
http://www.cs.uiuc.edu/~madhu/cav14/

http://www.cs.uiuc.edu/~madhu/cav14/

Quantified Data Automata for Linear Data Structures 35

taken to build the teacher from the samples collected along these test runs. We next
report the number of equivalence and membership queries answered by the teacher
in the active learning algorithm, the size of the final elastic automata in terms of the
number of states, whether the learned QDA required any elastification or not and
finally, the time (Tlearn) taken to learn the QDA.

The first part of the table presents results for programs manipulating arrays
like finding a key in an array, copying and comparing two arrays and simple sorting
algorithms over arrays. The inner and outer suffix in insertion and selection sort
corresponds to learning loop-invariants for the inner and the outer loops in those
sorting algorithms. In the second part of the table, we present results for programs
that manipulate lists like program list-sorted-find that finds an integer key in a sorted
list and program list-sorted-insert that inserts a key into a sorted list. The program
list-init-complex sorts an input array using heap-sort and then initializes a list with
the contents of this sorted array. Since heap-sort is a complex algorithm that views
an array as a binary tree, none of the current automatic white-box techniques for
invariant synthesis can handle such complex programs. However, our learning approach
being black-box, we are able to learn the correct invariant, which is that the list is
sorted. Similarly, synthesizing post-condition annotations for recursive procedures
like merge-sort and quick-sort is in general difficult for white-box techniques, like
interpolation, which require a post-condition. In fact, SAFARI [1], which is based
on interpolation, cannot handle list-structures, and also cannot handle array-based
programs with quantified preconditions which precludes verifying the array variants
of programs like list-sorted-find, list-sorted-insert, etc., which we can handle.

In the third part of the table we present results for verifying methods or code frag-
ments picked from real-world programs. The methods lookup_prev and add_cachepage
are from the module cachePage in ExpressOS, which a verified-for-security OS plat-
form for mobile applications [24]. The module cachePage maintains a cache of the
recently used disc pages as a priority queue based on a sorted list. Next, the method
sort is a merge sort implementation and insert_sorted is a method for inserting
a key into a sorted list. Both these methods are from the Glib library, which is
a low-level C library that forms the basis of the GTK+ toolkit and the GNOME
environment. The methods devres and rm_pkey are methods adapted from the Linux
kernel and an Infiniband device driver, both mentioned in [20]. Finally, we learn the
sortedness property (with respect to the method compare that compares two lines) of
the method sortlines which lies at the heart of the GNU core utility to sort a file. The
time taken by our technique to learn an invariant, being black-box, largely depends
on the complexity of the property and not the size of the code, as is evident from
the successful application of our technique to this large program. We also used our
learning approach for learning method pre-conditions, given a test suite; the results
for those experiments are presented in the fourth part of the table.

All experiments were completed on an Intel Core i5 CPU at 2.4GHz with 6GB of
RAM. For all examples, our prototype implementation learns an adequate invariant
really fast. Though the learned QDA might not be the smallest automaton representing
the samples S (because of the inaccuracies of the teacher), in practice we find that they
are reasonably small (fewer than 50 states). Moreover, we verified that the learned
invariants were adequate for proving the programs correct by generating verification
conditions and validating them using an SMT solver (these verified in less than 1s).
It is possible that SMT solvers can sometimes even handle non-elastic invariants and

36 Pranav Garg et al.

VCs; however, in our experiments, it was not able to handle such formulas without
giving extra triggers, thus suggesting the necessity of the elastification of QDAs.

Fig. 4: The learned EQDA that corresponds to the loop invariant of the program
list-sorted-find.

Learnt invariants are complex in some programs; for example, Figure 4 contains a
graphical depiction of the invariant EQDA we learned for the program list-sorted-find.
If we read the rightmost simple path in the EQDA from state q0 to q1 to state q14,
and then to q3 and q9, it handles the case when head = cur 6= nil and head→+ y1
and y1 →+ y2 and the EQDA asserts that the data at location pointed to by y1 is less
than or equal to the data at y2. In totality, the EQDA corresponds to the following
formula:
head 6= nil ∧ (∀y1y2.head →∗ y1 →∗ y2 ⇒ d(y1) ≤ d(y2)) ∧ ((cur = nil ∧ ∀y1.head →∗ y1 ⇒
d(y1) < k) ∨ (head→∗ cur ∧ ∀y1.head→∗ y1 →+ cur ⇒ d(y1) < k)).

Quantified Data Automata for Linear Data Structures 37

9 Conclusions

We have presented a new automaton model called quantified data automata that can
express universally quantified properties of linear data-structures, and which can be
used to express properties, including invariants, of arrays and lists. We have studied
the theory of quantified data automata, defined a subclass called elastic quantified
data automata that has decidable emptiness, and built active learning algorithms at
the level of formula words. Finally, we have adapted the active learning algorithm for
QDAs/EQDAs to learn invariants of programs manipulating arrays and lists, where
the decidability of EQDAs and their translation to decidable theories of arrays and
lists, yields a verification technique.

Elastic quantified data automata can also be seen as an abstract domain, and there
has been recent work exploiting this to build an abstract interpretation framework
for finding invariants in programs manipulating linear data-structures [14].

Neither active learning nor passive learning are robust learning frameworks for
synthesizing invariants, since there is no way for the teacher to ensure that the learned
invariants are inductive. A new model of learning, called ICE learning, proposes active
learning using examples, counter-examples, and implication pairs, with correctness
queries only, and is a much more robust model for synthesizing invariants [13]. An
ICE learning algorithm for QDAs/EQDAs has also been developed [13].

We believe that learning of structural conditions of data-structure invariants
using automata is an effective technique, especially for quantified properties where
passive or machine-learning techniques are not currently known. However, for the
data-formulas themselves, machine learning can be very effective [31], and we would
like to explore combining automata-based structural learning (for words and trees)
with machine-learning for data-formulas, especially for the ICE learning framework.

Acknowledgements: We would like to thank Xiaokang Qiu, who was involved
in early discussions on finding an automaton model for the decidable fragment of
Strand. This work was partially supported by NSF CAREER award #0747041 and
NSF Expeditions in Computing ExCAPE Award #1138994.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Safari: Smt-based
abstraction for arrays with interpolants. In: Madhusudan and Seshia [23], pp. 679–685

2. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning
assumptions. In: CAV, pp. 548–562 (2005)

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

4. Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: The
Automata Learning Framework. In: CAV, pp. 360–364. Springer (2010)

5. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: Abstract domains for automated rea-
soning about list-manipulating programs with infinite data. In: V. Kuncak, A. Rybalchenko
(eds.) VMCAI, Lecture Notes in Computer Science, vol. 7148, pp. 1–22. Springer (2012)

6. Bradley, A.R.: Sat-based model checking without unrolling. In: R. Jhala, D.A. Schmidt
(eds.) VMCAI, Lecture Notes in Computer Science, vol. 6538, pp. 70–87. Springer (2011)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: E.A. Emerson,
K.S. Namjoshi (eds.) VMCAI, Lecture Notes in Computer Science, vol. 3855, pp. 427–442.
Springer (2006)

38 Pranav Garg et al.

8. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal separating
dfa’s for compositional verification. In: S. Kowalewski, A. Philippou (eds.) TACAS, Lecture
Notes in Computer Science, vol. 5505, pp. 31–45. Springer (2009)

9. Chen, Y.F., Wang, B.Y.: Learning boolean functions incrementally. In: Madhusudan and
Seshia [23], pp. 55–70

10. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning assumptions for composi-
tional verification. In: H. Garavel, J. Hatcliff (eds.) TACAS, Lecture Notes in Computer
Science, vol. 2619, pp. 331–346. Springer (2003)

11. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant program
invariants. In: ICSE, pp. 449–458 (2000)

12. Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for esc/java. In: J.N.
Oliveira, P. Zave (eds.) FME, Lecture Notes in Computer Science, vol. 2021, pp. 500–517.
Springer (2001)

13. Garg, P., Löding, C., Madhusudan, P., Neider, D.: Ice: A robust framework for learning
invariants. In: A. Biere, R. Bloem (eds.) CAV, Lecture Notes in Computer Science, vol.
8559, pp. 69–87. Springer (2014)

14. Garg, P., Madhusudan, P., Parlato, G.: Quantified data automata on skinny trees: An
abstract domain for lists. In: F. Logozzo, M. Fähndrich (eds.) SAS, Lecture Notes in
Computer Science, vol. 7935, pp. 172–193. Springer (2013)

15. Gold, E.M.: Language identification in the limit. Information and Control 10(5), 447–474
(1967)

16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games, vol. 2500.
Springer (2002)

17. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: W. Damm, H. Hermanns
(eds.) CAV, Lecture Notes in Computer Science, vol. 4590, pp. 193–206. Springer (2007)

18. Kearns, M.J., Vazirani, U.V.: An introduction to computational learning theory. MIT
Press, Cambridge, MA, USA (1994)

19. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill (1970)
20. Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically inferring quantified

loop invariants by algorithmic learning from simple templates. In: APLAS, pp. 328–343.
Springer (2010)

21. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and
data. In: T. Ball, M. Sagiv (eds.) POPL, pp. 611–622. ACM (2011)

22. Madhusudan, P., Qiu, X.: Efficient decision procedures for heaps using strand. In: E. Yahav
(ed.) SAS, Lecture Notes in Computer Science, vol. 6887, pp. 43–59. Springer (2011)

23. Madhusudan, P., Seshia, S.A. (eds.): Computer Aided Verification - 24th International
Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, Lecture Notes in
Computer Science, vol. 7358. Springer (2012)

24. Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security invariants in
expressos. In: V. Sarkar, R. Bodík (eds.) ASPLOS, pp. 293–304. ACM (2013)

25. McMillan, K.L.: Interpolation and sat-based model checking. In: W.A.H. Jr., F. Somenzi
(eds.) CAV, Lecture Notes in Computer Science, vol. 2725, pp. 1–13. Springer (2003)

26. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover.
In: C.R. Ramakrishnan, J. Rehof (eds.) TACAS, Lecture Notes in Computer Science, vol.
4963, pp. 413–427. Springer (2008)

27. de Moura, L.M., Bjørner, N.: Efficient e-matching for smt solvers. In: F. Pfenning (ed.)
CADE, Lecture Notes in Computer Science, vol. 4603, pp. 183–198. Springer (2007)

28. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf.
Comput. 103(2), 299–347 (1993)

29. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

30. Seghir, M.N., Podelski, A., Wies, T.: Abstraction refinement for quantified array assertions.
In: J. Palsberg, Z. Su (eds.) SAS, Lecture Notes in Computer Science, vol. 5673, pp. 3–18.
Springer (2009)

31. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan and Seshia
[23], pp. 71–87

32. Srivastava, S., Gulwani, S.: Program verification using templates over predicate abstraction.
In: M. Hind, A. Diwan (eds.) PLDI, pp. 223–234. ACM (2009)

33. Thomas, W.: Languages, automata, and logic. In: G. Rozenberg, A. Salomaa (eds.)
Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer (1997)

34. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: LICS, pp. 332–344. IEEE Computer Society (1986)

	Introduction
	Overview
	Preliminaries
	Properties of QDAs
	Learning QDAs
	Elastic Quantified Data Automata
	Linear Data-structures to Words and EQDAs to Decidable Logics
	A Case Study on Learning Invariants of Linear Data Structures
	Conclusions

