
Certified Program Models for Eventual Consistency

Edgar Pek, Pranav Garg, Muntasir Raihan Rahman, Indranil Gupta, P. Madhusudan
University of Illinois at Urbana-Champaign

{pek1, garg11, mrahman2, indy, madhu}@illinois.edu

Paper Type: Research, Long

Abstract
We present a new approach, certified program models, to
establish correctness of distributed protocols. We propose
modeling protocols as programs in standard languages like
C, where the program simulates the processes in the dis-
tributed system as well as the nondeterminism, the commu-
nication, the delays, the failures, and the concurrency in the
system. The program model allows us to test the protocol
as well as to verify it against correctness properties using
program verification techniques. The highly automated test-
ing and verification engines in software verification give us
the tools needed to establish correctness. Furthermore, the
model allows us to easily alter or make new design deci-
sions, while testing and verifying them.

We carry out the above methodology for the distributed
key-value store protocols underlying widely used frame-
works such as Dynamo [30], Riak [2] and Cassandra [4]. We
model the read-repair and hinted-handoff table based recov-
ery protocols as concurrent C programs, test them for confor-
mance with real systems, and then verify that they guarantee
eventual consistency, modeling precisely the specification as
well as the failure assumptions under which the results hold.
To the best of our knowledge, this is the first verification
technique that shows correctness of these distributed proto-
cols using mostly-automated verification.

1. Introduction
Distributed systems are complex software systems that pose
myriad challenges to formally verifying them. While many
distributed protocols running in these systems stem from
research papers that describe a core protocol (e.g., Paxos),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Submission to SoCC ’15, October, 2015, Hawaii.

their actual implementations are known to be much more
complex (the “Paxos Made Live” paper [25] shows how
wide this gap is).

The aim of this paper is to strike a middle-ground in
this spectrum by verifying models of actual protocols imple-
mented in systems. We propose a new methodology, called
certified programs models, where we advocate that the fairly
complex protocols in distributed systems be modeled us-
ing programs (programs written in traditional systems lan-
guages, like C with concurrency), and certified to be correct
against it’s specifications.

The idea is to model the entire distributed system in
software, akin to a software simulator of the system. The
model captures the distributed processes, their memory state,
the secondary storage state, the communication, the delays,
and the failures, using non-determinism when necessary.

The salient aspects of this modeling are that it pro-
vides:
(a) a modeling language (a traditional programming lan-

guage) to model the protocols precisely,
(b) an executable model that can be validated for accuracy

with respect to the system using testing, where the pro-
grammer can write test harnesses that control inputs as
well as physical events such as node and network fail-
ures, and test using mature systematic testing tools for
concurrent software, like CHESS [52, 53].

(c) an accurate modeling of specifications of the protocol
using ghost state in the program as well as powerful
assertion logics, and

(d) a program model that lends itself to program verifica-
tion techniques, especially using tools such as VCC [29]
that automate large parts of the reasoning using logical
constraint solvers.

In this paper, we explore the certified model paradigm
for modeling, testing, and formally proving properties of
core distributed protocols that underlie eventually consistent
distributed key-value/NoSQL stores. Eventually consistent
key-value stores originated with the Dynamo system from
Amazon [30] and are today implemented in systems such as
Riak [2], Cassandra [4], and Voldemort [10]. We show how

1

to build program models for them in concurrent C, test them
for conformance to the intended properties of the systems
by using automated testing tools like CHESS [52, 53], and
formally verify the eventual consistency property for them
using VCC [29], a verification tool for concurrent C.

1.1 Key-value/NoSQL Storage Systems and Eventual
Consistency

Key-value/NoSQL stores are on the rise [8] and are used
today to store Big Data in many companies, e.g., Netflix,
IBM, HP, Facebook, Spotify, PBS Kids, etc. rely heavily on
the Cassandra key-value store system while Riak is used by
BestBuy, Comcast, the NHS UK, The Danish Health and
Medicines Authority for patient information, and Rovio, the
gaming company behind AngryBirds.

Key-value/NoSQL storage systems arose out of the CAP
theorem/conjecture, which was postulated by Brewer [20,
21] (a proof under a particular model is given by Gilbert and
Lynch [34, 49]). The conjecture states that a distributed stor-
age system can choose at most two out of three important
characteristics— strong data Consistency (i.e., linearizabil-
ity or sequential consistency), Availability of data (to reads
and writes), and Partition-tolerance. Hence achieving strong
consistency while at the same time providing availability in
a partitioned system with failures is impossible.

While traditional databases preferred consistency and
availability, the new generation of key-value/NoSQL sys-
tems are designed to be partition-tolerant in order to handle
highly distributed partitions that arise due to the need of dis-
tributed access, both within a datacenter as well as across
multiple data-centers. As a result, a key-value/NoSQL sys-
tem is forced to chose between one of either strong consis-
tency or availability— the latter option providing low laten-
cies for reads and writes.

Key-value/NoSQL systems that prefer availability in-
clude Cassandra [43], Riak [2], Dynamo [30], and Volde-
mort [10], and support weak models of consistency (e.g.,
eventual consistency). Other key-value/NoSQL systems in-
stead prefer strong consistency, e.g., HBase [7], Bigtable [26],
and Megastore [17], and may be unavailable under failure
scenarios.

One popular weak consistency notion is eventual consis-
tency, which roughly speaking, says that if no further up-
dates are made to a given data item, all replicas will even-
tually hold the same value (and a read would then produce
this value). Eventual consistency is a liveness property, not
a safety property [16]. The precise notion of what eventual
consistency means in these protocols (the precise assump-
tions under which they hold, the failure models, the assump-
tions on the environment, etc.) are not well understood, let
alone proven. Programmers also do not understand the sub-
tleties of eventually consistent stores; for instance, default
modes in Riak and Cassandra can permanently lose writes—
this is dangerous, and has been exploited in a recent attack
involving BitCoins [9].

1.2 Contributions of this Paper
The primary contribution of this paper is to precisely rea-
son about the guarantees of eventual consistency that real
implementations of key-value stores provide. We model two
core protocols in key-value stores as programs, the hinted-
handoff protocol and the read-repair protocol, which are
anti-entropy mechanisms first proposed in the Amazon Dy-
namo system [30], and later implemented in systems such as
Riak [2] and Cassandra [4].

We build certified program models— program models
for these protocols written in concurrent C and that are ver-
ified for eventual consistency. The program uses threads to
model concurrency, where each get/put operation as well as
the asynchronous calls they make are modeled using con-
currently running threads. The state of the processes, such
as stores at replicas and the hinted-handoff tables, are mod-
eled as shared arrays. Communication between processes is
also modeled using data-structures: the network is simulated
using a set that stores pending messages to replicas, with an
independent thread sending them to their destinations. Fail-
ures and non-determinism of message arrivals, etc., are also
captured programmatically using non-determinism (mod-
eled using stubs during verification and using random coin-
tosses during testing). In particular, system latency is cap-
tured by threads that run in the background and are free to
execute anytime, modeling arbitrarily long delays.

In the case of the hinted-handoff protocol, we prove that
this protocol working alone guarantees eventual consistency
provided there are only transient faults. In fact, we prove a
stronger theorem by showing that for any operation based
(commutative) conflict-free replicated data-type implement-
ing a register, the protocol ensures strong eventual consis-
tency— this covers a variety of schemes that systems use,
including Riak and Cassandara, to resolve conflict when im-
plementing a key-value store. Strong eventual consistency
guarantees not only eventual consistency, but that the store
always contains a value that is a function of the set of updates
it has received, independent of the order in which it was re-
ceived. We prove this by showing that the hinted-handoff
protocol (under only transient failures) ensures eventual de-
livery of updates; this combined with an idempotent Cm-
RDT [57, 59] implementing a register ensures strong even-
tual consistency. We model the eventual delivery property in
the program model using a ghost taint that taints a particular
write at a coordinator (unbeknownst to protocol), and asserts
that the taint propagates eventually to every replica. Eventual
delivery is a liveness property, and is established by finding
a ranking function that models abstractly the time needed to
reach a consistent state, and a slew of corresponding safety
properties to prove this program correct.

For the read-repair protocol, we first believed the popularly-
held opinion that a read-repair (issued during a read) would
bring the nodes that are alive to a consistent state eventually,
and tried to prove this property. However, while working

2

on the proof, we realized that there is no invariant that can
prove this property, and this made us realize that the prop-
erty in fact does not hold. A single read is insufficient, and
we hence prove a more complex property: at any point, if a
set of nodes are alive and they all stay alive, and if all re-
quests stop except for an unbounded sequence of reads to a
key, then the live nodes that are responsible for the key will
eventually converge.

Note that the certification that the program models satisfy
their specification is for an unbounded number of threads,
which model an unbounded number of replicas, keys, val-
ues, etc., model arbitrarily long input sequences of updates
and reads to the keys, and model the concurrency preva-
lent in the system using parallelism in the program. The
verification is hence a complete verification as opposed to
several approaches in the literature which have used under-
approximations in order to systematically test a bounded-
resource system [48, 51, 54, 55]. In particular, Amazon has
reported modeling of distributed protocols using TLA, a for-
mal system, and used model-checking (systematic testing)
on bounded instances of the TLA system to help understand
the protocols, check their properties, and help make design
decisions. Our results, in contrast, model protocols using C
programs, which we believe are much simpler for systems
engineers to use to model protocols, and being executable,
is easy to test using test harnesses. Most importantly, we
have proved the entire behavior of the protocol correct (as
opposed to the work using TLA) using the state-of-the-art
program verification framework VCC [29] that automates
several stages of the reasoning.

We also give an account of our experience in building
certified program models (Section 6). In addition to result-
ing in proven models, there were several other side benefits
that resulted, including a vocabulary of reasoning that the
model provided, a nuanced accurate formalization of the as-
sumptions under which eventual consistency holds, as well
as helping us realize that certain specifications that we be-
lieved in did not hold.

The paper is structured as follows. Section 2 describes
key-value stores, eventual consistency, and the main anti-
entropy protocols that are implemented in systems and that
we study in this paper (readers familiar with these topics
can choose to skip this section). We describe our main re-
sults in Section 3, where we describe the precise property
we prove for the protocol models as well as some properties
that we expected to be initially true, but which we learned
were not true through our experience. Section 4 describes
our models of protocols using programs in detail, including
the testing processes we used to check that our model was
reasonable. The entire verification process, including back-
ground on program verification, the invariants and ranking
functions required for proving the properties, etc., are given
in Section 5. A gist of the effort we put in, the experience we
had, and the lessons we learned are described in Section 6.

Section 7 describes related work and Section 8 concludes
with interesting directions for future work.

2. Background
In this section we describe in detail the read and write paths
involved in a key-value store, and the anti-entropy mech-
anisms which are used to implement eventual consistency
by reconciling divergent replicas. Readers familiar with key-
value store system internals can skip this section without loss
of continuity.

2.1 Key-value stores
Key-value stores have a simple structure. They store pairs
of keys and values, and they usually have two basic opera-
tions: get(key) for retrieving the value corresponding to the
key, and put(key, value) for storing the value of a particular
key1. Key-value stores typically use consistent hashing [39]
to distribute keys to servers, and each key is replicated across
multiple servers for fault-tolerance. When a client issues a
put or get operation, it first interacts with a server (e.g., the
server closest to the client). This server plays the role of a
coordinator: it coordinates the client and replica servers to
complete put and get operations. The CAP theorem [21] im-
plies that under network partitions (the event where the set of
servers splits into two groups with no communication across
groups), a key-value store must choose either consistency
(linearizability) [36] or availability. Even when the network
is not partitioned, the system is sometimes configured to fa-
vor latency over consistency [11]. As a result, popular key-
value stores like Apache Cassandra [43] and Riak [2] expose
tunable consistency levels. These consistency levels control
the number of processes the coordinator needs to hear from
before returning and declaring success on reads and writes.
For instance, a write threshold of one, would allow the sys-
tem to return with success on a write when it has successfully
written to just one replica. When the sum of read and write
thresholds is greater than the number of replicas, the system
will ensure strong consistency. Consistency levels weaker
than quorum are the most popular since they achieve low
latency (e.g., Amazon [1]).

2.2 Eventual Consistency
In general, a consistency model can be characterized by re-
strictions on operation ordering. The strongest models, e.g.,
linearizability [36] severely restrict the possible orderings of
operations that can lead to correct behavior. Eventual con-
sistency lies at the opposite end of the spectrum; it is the
weakest possible consistency model. Informally, it guaran-
tees that, if no further updates are made to a given data item,
reads to that item will eventually return the same value [64].
Thus until some undefined time in the future when the sys-
tem is supposed to converge, the user can never rule out

1 We use both read/write and get/put terms to mean data fetch and data
update operations.

3

the possibility of data inconsistency. Despite the lack of any
strong guarantees, many applications have been successfully
built on top of eventually consistent stores. Most stores use
some variation of anti-entropy [31] protocols to implement
eventual consistency mechanisms.

2.3 Anti-entropy Protocols
To achieve high availability and reliability, key value stores
typically replicate data on multiple servers. For example,
each key can be replicated on N servers, where N is a config-
urable parameter. In the weakest consistency setting (consis-
tency level that has read and write thresholds of one), each
get and put operation only touches one replica (e.g., the one
closest to the coordinator). Thus in the worst case scenario,
if all puts go to one server, and all gets are served by a differ-
ent server, then the replicas will never converge to the same
value. To ensure convergence to the same value, key-value
stores like Dynamo [30], Apache Cassandra [4], and Riak [2]
employ anti-entropy protocols. An anti-entropy protocol op-
erates by comparing replicas and reconciling differences.
The three main anti-entropy protocols are: (1) Read-Repair
(RR), (2) Hinted-Handoff (HH), and (3) Node-Repair (NR).
While the first two are real-time protocols involved in the
read and write paths respectively, the third one is an off-
line background maintenance protocol, which runs period-
ically (e.g., during non-peak load hours) to repair out-of-
sync nodes (e.g., when a node rejoins after recovering from
a crash). In this paper we are only concerned with the real-
time anti-entropy protocols. Node-repair is mostly an offline
process whose correctness lies solely in the semantics of the
merge, so we do not consider it in this paper.

2.3.1 Read-Repair (RR)
Read-repair [30] is a real-time anti-entropy mechanism that
ensures that all replicas have (eventually) the most recent
version of a value for a given key (see Figure 1). In a typical
read path, the coordinator forwards read requests to all repli-
cas, and waits for a consistency level (CL out of N) number
of replicas to reply. If read-repair is enabled, the coordina-
tor checks all the read responses (from the nodes currently
alive), determines the most recent read value2, and finally
pushes the latest version to all out of date replicas.

2.3.2 Hinted-Handoff (HH)
Unlike read-repair, hinted-handoff [30] is part of the write
path. It offers full write availability in case of failures, and
can improve consistency after temporary network failures.
When the coordinator finds that one of the replicas respon-
sible for storing an update is temporarily down (e.g., based
on failure detector predictions), it stores a hint meta-data for
the down node for a configurable duration of time. Once the

2 Determining the most recent version of data to push to out of date replicas
is implementation dependent. For Apache Cassandra, the replica value with
highest client timestamp wins. Riak uses vector clocks to decide the winner,
and can deduce multiple winners in case of concurrent writes.

Figure 1. Read-repair propagation : before read-repair,
replicas can have inconsistent values (C is the coordinator).
After the propagation of the latest value to all out-of-date
replicas, all replicas converge on a value.

coordinator detects that the down node is up, it will attempt
to send the stored hint to that recovered node. Thus hinted-
handoff ensures that no writes are lost, even in the presence
of temporary node failures. In other words this mechanism
is used to ensure that eventually all writes are propagated to
all the replicas responsible for the key.

3. Characterizing and proving eventual
consistency

The goal of this paper is to prove eventual consistency of
the hinted-handoff and read-repair protocols that systems
like Cassandra and Riak implement, delineating precisely
the conditions under which they hold. Our effort spanned a
period of 15 months, with about 6 person months of effort for
modeling and verification. In order to accomplish this task,
we abstract away from the particular instantiation of these
protocols in these systems, and also abstract away from the
various options they provide to users to modify the behavior
of the system.

For instance, in Riak, using one set of options, every write
is tagged with a vector clock at the client, and every replica
responsible for it maps it to a set of values, one for each last
concurrent write that it has received. When a read is issued,
Riak can return the set of all last concurrently written values
to it (these values are called “siblings” in Riak). However,
in Cassandra, vector clocks are not used; instead each client
labels every write with a timestamp, and despite there being
drift amongst the clocks of clients, each replica stores only
the last write according to this timestamp. Further, these
policies can be changed; for instance in Riak, a user can set
options to mimic the Cassandra model.

We will capture these instantiations by generalizing the
semantics of how the store is maintained. For the hinted-
handoff protocol, we prove eventual consistency under the
assumption that the stores are maintained using some idem-
potent operation-based commutative replicated data-type
(CRDT) [57, 58] that implements a register, while for read-

4

repair, we prove eventual consistency assuming an arbitrary
form of conflict resolution.

Failure Models
Let us first discuss the failure models we consider, which
are part of the assumptions needed to prove properties of
protocols. We consider two failure modes:
• Transient failure: Nodes or network edges can fail, but

when they come back, they preserve the state at which
they crash and resume from there.

• Permanent failure: Nodes or network edges can fail, and
when they come back, they have lost main memory and
start with some default store.

3.1 Properties of the Hinted-Handoff Protocol
The hinted-handoff protocol is an opportunistic anti-entropy
mechanism that happens during writes. When a write is is-
sued, and the asynchronous call to write to certain replicas
fail (either explicitly or due to a time-out), the coordinator
knows that these replicas could be out of sync, and hence
stores these update messages in a hinted-handoff table lo-
cally to send them later to the replicas when they come back
alive. However, if there is a memory crash (or a permanent
failure), the hinted-handoff table would be lost, and all repli-
cas may not receive the messages. In practice, the read-repair
(and node-repair) protocols protect against permanent fail-
ures.

Commutative Replicated Data Type for Registers: Our
main abstraction of the key-value store is to view the
underlying protocol as implementing a register using an
operation-based conflict-free replicated datatype (CRDT)(also
called a commutative replicated data-type CmRDT [58, 59]).

We also assume another property of these CmRDTs,
namely idempotency— we assume that all messages are
tagged with a unique id, and when a message is delivered
multiple times, the effect on the store is the same as when
exactly one message is delivered. Let us call these idempo-
tent CRDTs3.

When implementing a simple key-value store, the vector-
clock based updates in Riak and the simpler time-stamp
based update in Cassandra can in fact be both seen as idem-
potent CmRDTs, the former being a multi-valued (MV) reg-
ister, and the latter being a last write wins (LWW) register
(see [57]). (However, since a global wall-clock time is not
available, in general, this strategy in Cassandra can lose up-
dates [3]). The CmRDTs for both Last Write Wins (LWW)
and Multi-valued (MV) registers are in fact idempotent—
the systems tags each write with a timestamp, and the
conflict-resolution will ignore the future deliveries of a mes-
sage with same time-stamp (see [57], Section 3.2).

3 Standard definitions of Operation-based CRDTs do not guarantee
idempotency— instead they assume the environment delivers every mes-
sage precisely once to each replica (see [58], text after Definition 5). Note
that state-based CRDTs are defined usually to be idempotent.

The main property we prove about the hinted-handoff
protocol is a property called eventual delivery, which says
that every successful write eventually gets delivered to ev-
ery replica at least once (under assumptions of kinds of fail-
ure, assumptions on replicas being eventually alive, etc.).
Hence, instead of eventual consistency, we argue eventual
delivery, which in fact is the precise function of these pro-
tocols, as they are agnostic of the conflict resolution mech-
anism that is actually implemented in the system. Further-
more, assuming that each replica actually implements an
idempotent operation-based CRDT register, and update pro-
cedures for these datatypes are terminating, eventual deliv-
ery ensures eventual consistency, and in fact strong even-
tual consistency [58]. Recall that strong eventual consistency
guarantees not only eventual consistency, but that the store
always contains a value that is a function of the set of up-
dates it has received, independent of the order in which it
was received.

Our first result is that a system running only hinted-
handoff-based repair provides eventual delivery of updates
to all replicas, provided there are only transient faults.

Result#1: The hinted-handoff protocol ensures eventual de-
livery of updates to all replicas, provided there are only tran-
sient faults. More precisely, if there is any successful write,
then assuming that all replicas recover at some point, and
reads and write requests stop coming at some point, the write
will get eventually propagated to every replica.

We formally prove the above result (and Result#2 men-
tioned below) for arbitrary system configurations using pro-
gram verification techniques on the program model (see Sec-
tion 4 and Section 5 for details).

The following is an immediate corollary from the proper-
ties of eventual delivery and idempotent CRDTs:

Corollary#1: A system following the hinted-handoff pro-
tocol, where each replica runs an operation-based idem-
potent CRDT mechanism that has terminating updates, is
strongly eventually consistent, provided there are only tran-
sient faults.

Aside: The above corollary may lead us to think that we can
use any operation-based CmRDT for counters at stores to
obtain strong eventually consistent counters in the presence
of transient failures. However, CmRDTs for counters are
in fact not idempotent (and the CmRDT counters in [58]
assume that the system will deliver messages precisely once,
which hinted handoff cannot guarantee).

3.2 Properties of the Read-repair Protocol
Our second result concerns the read-repair protocol. Read-
repair is expected to be resilient to memory-crash failures,
but only guarantees eventual consistency on a key provided
future reads are issued at all to the key. Again, we abstract
away from the conflict resolution mechanism, and we as-
sume that the coordinator, when doing a read and getting

5

Coordinator Replica A Replica B Replica C

𝑉 = 0
V=1

V=2

V=2
V=2

put(2)

get()

𝑤𝐵(2) 𝑎𝑐𝑘𝐶

Replica C
crashed

𝑟𝑑𝐴(0)

𝑤𝐶(2)

𝑤𝐴(2)

𝑟𝑑𝐵(1)

𝑟𝑟𝑤𝐴(1)

Figure 2. The time-line showing that a single read-repair
operation does not guarantee convergence of the live repli-
cas. In the figure wr are write messages to replica r, rdr are
messages from replica r to the coordinator on the read path,
and rrwr is the read-repair message to replica r. Time in the
figure advances from top to bottom. The messages along the
read(-repair) path are shown as dotted lines and along the
write path as solid lines.

different replies from replicas, propagates some consistent
value back to all the replicas. This also allows our result
to accommodate anti-entropy mechanisms [31] that are used
instead of read-repair, in a reactive manner after a read. Note
that this result holds irrespective of the hinted-handoff pro-
tocol being enabled or disabled.

It is commonly believed that when a read happens, the
read repair will repair the live nodes at the time of the
read (assuming they stay alive), bringing them to a common
state. We modeled the read-repair protocol and tried to prove
this property, but we failed to come up with appropriate
invariants that would ensure this property. This led us to the
hypothesis that the property may not be true.

To see why, consider the time-line in Figure 2. In this
scenario, the client issues a put request with the value 2,
which is routed by the coordinator to all three replicas–
A,B, and C (via messages wA(2),wB(2), and wC(2)). The
replica C successfully updates its local store with this value.
Consider the case when the write consistency is one and the
put operation succeeds (inspite of the message wB(2) being
lost and the message wA(2) being delayed). Now assume that
the replica C crashes, and the last write (with value 2) is
in none of the alive replicas– A and B. If we consider the
case where B has the latest write (with value 1) amongst
these two live nodes, a subsequent read-repair would write
the value 1 read from B to A′s store (via message rrwA(1)
in Figure 2). But before this write reaches A, A could get
a pending message from the network (wA(2)) and update its
value to a more recent value– 2. In this situation, after replica
A has updated its value to 2, the two alive replicas (A and B)
do not have consistent values. Due to the lack of hints or
processes with hints having crashed B may never receive the
later write (message wB(2)).
We therefore prove a more involved property of read-repair:

Result#2: After any sequence of reads and writes, if all
operations stop except for an infinite sequence of reads of
a key, then assuming the set R of replicas are alive at the
time of the first such read and thereafter, the replicas in R
will eventually converge to the same value.

We prove the above result also using program verifica-
tion on the program model. Intuitively, as long as an indefi-
nite number of reads to the key happen, the system will en-
sure that the subset of live replicas responsible for the key
converge to the same value, eventually. A read-repair may
not bring the live replicas to sync if there are some pend-
ing messages in the system. However, since there is only a
finite amount of lag in the system (pending messages, pend-
ing hints, etc.), and once the system is given enough time to
finish its pending work, a read-repair will succeed in synch-
ing these replicas.

3.3 Read-repair and CRDT
It is tempting to think that one could implement any CRDT
and reach eventual consistency of the CRDT store using
solely read-repair, similar to the Corollary we obtained for
Result#1. However, this is tricky when clients send opera-
tions to do on the CRDT and the conflict-resolution in read-
repair happens using state-based merges.

For instance, assume that we implement a counter CRDT,
where state-merges take the maximum of the counters, and
operations increment the counter [58]. Then we could have
the following scenario: there are 7 increments given by
clients, and the counter at replica A has the value 5 and
replica B has 7 (with two increments yet to reach A), and
where a read-repair merges the values at these replicas to
7, after which the two pending increments arrive at A in-
crementing it to 9 (followed by another read-repair where
B also gets updated to 9). Note that consistency is achieved
(respecting our Result#2), but the counter stores the wrong
value.

Systems such as Riak implement CRDTs [6] using these
underlying protocols by not propagating operations (like
increments) across replicas, but rather increment one replica,
and pass the state to other replicas, and hence implement a
purely state-based CRDT [5].

4. Program Models for Protocols
In this section we describe how we model the anti-entropy
protocols used in eventually consistent key-value stores. The
architecture of our model is depicted in Figure 3.

Our model consists of several methods (get, put, write ls,
read ls, etc.) for each replica, that run concurrently as
threads, make asynchronous calls to each other, and keep
their state through shared data-structures (local store, hint store,
etc.). Furthermore, in order to model asynchronous calls, we
maintain a data-structure pending store, that models mes-
sages in the network that haven’t yet been delivered.
The methods in our model include:

6

query replicas

wait for response
from R replicas

return value if
consistent, else
report failure

spawn read-repair

get(key)

return value from
the local store

read_ls(key)
send writes to all

replicas

on failure/timeout
write to hint store

return success when
W replicas succeed,
else report failure

put(key, value)

pending
store send write to

replica or model
failure / timeout

network()

write value to the local
store

write_ls(key, value)

local
store

hint
store

take hints and try to
write them to the

replica

handoff_hint()

wait for responses
from all replicas

read_repair()

write a value to
replicas with

inconsistent value

Client

remove operations from
pending store

restore any local store to its
default

destroy hint_store table

permanent_failures()

Replica A

Replica B

Figure 3. Architecture of the model: boxes indicate methods, ellipses show data structures, arrows show communications.

• The get and put methods at coordinators that forms the
interface to clients for reading and writing key-values.

• An internal method handoff hint for each replica that
runs all the time and removes hints from the hinted-
handoff table and propagates them to the appropriate
replicas (provided they are alive).

• An internal method read repair which is part of the read
path, waits for all the replicas to reply, and on detecting
replicas with inconsistent values writes the consistent
value to those replicas.

• Internal methods read ls and write ls, that read from and
write to the local stores (provided they are alive).

• An internal method network that runs all the time and
delivers messages in the pending store to replicas.

• An internal method permanent failures, which when per-
manent failure is modeled, runs all the time, and can
remove elements from the pending set (modeling loss
of messages), restore any local store to its default value
(modeling store crashes), and destroy hinted-handoff ta-
bles.

We use the following data-structures:

• An array LocalStore[] that stores the local store for each
replica and each key that the replica maintains.

• An array HintStore[] that stores, for each replica, the set
of hints stored at the replica.

• An array PendingStore[] that stores a set of pending
messages on the network between replicas.

Note that the modeling of these methods using fine-
grained concurrency ensures arbitrary interleaving of these
processes as well as arbitrary delays in them. Also, transient
failures, where nodes fail but resume later with the correct

state, can be seen as delays in processes, and hence are cap-
tured in this concurrency model. The thread that delivers
messages in the pending set models arbitrary delays in the
network.

The read ls and write ls methods are modeled abstractly
as idempotent CRDTs by defining them as stubs which
maintain properties. When testing, these methods need to be
instantiated to particular conflict-resolution strategies (like
MV and LWW).

Modeling the get operation: When a client issues a get
request for a key, in our model the request is routed to the
coordinator that is determined for this key according to an
abstract map (our verification hence works for all possi-
ble hashing schemes). Every key-value datum is replicated
across multiple nodes, where the number of nodes that con-
tain the key-value datum is determined by a replication fac-
tor. The coordinator maintains a preference list of repli-
cas that contain data values for keys that are mapped to
it. Along the read path, the coordinator asynchronously is-
sues the read request to all replica threads (an asynchronous
call to a replica is depicted in Figure 3 as an arrow from
the get method to read ls). As shown in Figure 3, the co-
ordinator blocks for a non-deterministic amount of time or
until it receives enough responses (the arrow directed from
read ls to get) as specified by the read consistency level R.
On receiving responses from R replicas, it returns the read
value(s) to the client. If read repair is enabled, the coordi-
nator also spawns a background thread (depicted as a call
to read repair from get in Figure 3) which will wait for re-
sponses from the other replicas (it already knows about re-
sponses from the R replicas) for a non-deterministic amount
of time. This thread determines the most recent data value of
all the values stored in various replicas, and writes it to the
replicas with stale values.

7

Modeling the put operation: When a client issues a put re-
quest to store a key-value pair, the request is routed to the ap-
propriate coordinator, as explained before. The coordinator
asynchronously issues write requests to all replica threads
in its preference list. The coordinator then blocks for a non-
deterministic amount of time or until it receives enough re-
sponses, as specified by the write consistency level W . To
model arbitrary network delays or failures of the replicas,
the write operations to these replicas are inserted by the co-
ordinator into the pending store data structure (in Figure 3
this is depicted as an arrow from put to the pending store).
If the coordinator receives responses from W replicas, it in-
forms the client about the successful put operation.

Modeling the network: A background network thread
models arbitrary network delays or failure scenarios as it
removes a write operation from the pending store data struc-
ture and, non-deterministically, either updates the local store
of the appropriate replica with the write or simply loses the
operation. When the hinted-handoff protocol is enabled and
read-repair is disabled, we assume that the write operations
are not lost. In this scenario, when losing/removing the write
operation from the pending store, the network thread inserts
the operation as a hint in the hinted-handoff table of the ap-
propriate coordinator. The permanent failures thread does
not execute in this case and data in the global data structures
is not lost.

Testing Program Models: Once we devised a model of the
anti-entropy protocols, we tested it to make sure that it cor-
responds to actual systems. In our testing model we provide
implementations for the stubs that model failure and non-
determinism in message arrivals. In particular, for testing we
use random coin-tosses instead of non-deterministic choices
present in the verification model. Besides this, we also pro-
vide concrete implementations for conflict-resolution strate-
gies for operations on CRDTs based on the last write wins
(LWW) and vector clocks (MV).

We wrote a test harness that arbitrarily issues put and get
operations for various key-value pairs. We then checked if
the results of these operations can be realized by the ac-
tual eventually consistent key-value stores. We also used
CHESS [53], which is a systematic testing tool for con-
current programs, to systematically enumerate all possible
thread schedules. Using CHESS we were able to ensure that
our model realized strange but possible behaviors of the
eventually-consistent stores.

We exhaustively tested a number of possible scenarios.
Here, we discuss a configuration with three replicas, where
the write consistency level is set to two, and the read consis-
tency level is set to one. One interesting scenario is where the
client successfully performs a write operation on a key with
a value 0, followed by an unsuccessful write on the same
key with a value 1. A subsequent read of the key returns the
value 1. This is a nonintuitive scenario, but it can manifest in
a real system because failures are not guaranteed to leave the

stores unaffected and an unsuccessful write can still write to
some of the replicas.

In another scenario, the client successfully performs two
consecutive write operations to a key with values 0 and 1.
Subsequently, one read returns the value 1, while a subse-
quent read returns the stale value 0. This behavior can hap-
pen in a real system where the client gets staler values over
time. In particular, this scenario occurs when the two replicas
store the value 1 after the second write operation (remember
the write consistency level is two) and the third replica still
stores the stale value 0.

Now consider a configuration with three replicas but
where both read and write consistency levels are set to one.
In the third scenario we consider the case when the client
issues three consecutive successful writes with values 0, 1,
and 2. Subsequent reads first return a stale value 1 followed
by returning an even more stale value 0. This unusual be-
havior manifests when the three replicas all store different
values (the read requests may access any of them).

Finally, we consider a scenario where there are four con-
secutive successful writes to a key with values 0, 1, 2, and
3. If the subsequent two reads for the same key return values
2 followed by 1, then a following third read cannot return
the value 0. This scenario cannot happen because the three
replicas must have values 1, 2, and 3 at the time of the last
read (the reader is invited to work this case out on paper).

We used CHESS to confirm the realizability of the first
three scenarios, and infeasibility of the last scenario. CHESS
took from less than a second to up to 10 minutes to exhaus-
tively explore all interleavings corresponding to these four
test harnesses. We were also able to observe some of these
scenarios in a real installation of Cassandra.

5. Verification of Anti-entropy protocols
In this section we first describe our verification methodol-
ogy, followed by our verification of the hinted-handoff and
read-repair anti-entropy protocols.

5.1 Verification Methodology
Verification process: We use the deductive verification
style for proving programs correct. For sequential programs,
this style is close to Hoare logic style reasoning [15, 37]. It
proceeds by the programmer annotating each method with
pre/post conditions and annotating loops with loop invari-
ants in order to prove assertions in the program. Further-
more, in order to prove that functions terminate, the user
provides ranking functions for loops (and recursive calls)
that are mappings from states to natural numbers that must
strictly decrease with each iteration [15, 63]. Reasoning that
these annotations are correct is done mostly automatically
using calls to constraint solvers (SMT solvers), with very
little help from the user.

There are several different approaches to verify concur-
rent programs, especially for modular verification. We use

8

VCC [29] tool to verify our models. VCC is a verifier for
concurrent C programs 4. The basic approach we take to
verify our models is to treat each concurrent thread as a
sequential thread for verification purposes, but where every
access to a shared variable is preceded and succeeded by a
havoc that entirely destroys the structures shared with other
threads. However, this havoc-ing is guarded by an invariant
for the global structures that the user provides. Furthermore,
we check that whenever a thread changes a global structure,
it maintains this global invariant. This approach to verifica-
tion is similar to rely-guarantee reasoning [38], where all
threads rely and guarantee to maintain the global invariant
on the shared structures.

Specifications: Another key aspect of the verification pro-
cess is writing the specification. Though the specification
is written mainly as assertions and demanding that certain
functions terminate, specifications are often described accu-
rately and naturally using ghost code [15, 29]. Ghost code is
code written purely for verification purposes (it does not get
executed) and is written as instructions that manipulate ghost
variables. It is syntactically constrained so that real code can
never see the ghost state. Hence this ensures that the ghost
code cannot affect the real code.

In our framework, we use ghost code to model the taint-
based specification for eventual delivery (see Section 5.2). It
is important that the protocol does not see the tainted write,
because we do not want a flow of information between the
executable program and the specification. We also use ghost
code to maintain mathematical abstractions of concrete data-
structures (like the set associated with an array, etc.).

Testing annotations: We extensively used testing, espe-
cially in early stages, to assert invariants that we believe held
in the system at various points in the code. Prior to verifica-
tion, which requires strong inductive invariants, testing al-
lowed us to gain confidence in the proof we were building
(as well as the model we were constructing). These invari-
ants then were the foundation on which the final proof was
built upon.

5.2 Verifying the hinted-handoff protocol
As explained in Section 3, verification that hinted-handoff
protocol maintains strong eventual consistency under tran-
sient failures and for idempotent operation-based CRDT re-
duces to verification of eventual delivery (Result#1 in Sec-
tion 3.1). Recall that, eventual delivery is the property that
every successful write eventually gets delivered to every
replica at least once.

Taint-based specification of eventual delivery: We model
eventual delivery using a ghost field taint, that records a par-
ticular (exactly one) write operation issued to the coordina-

4 Even though our model and invariants apply to unbounded number of
instances, verification of C programs, strictly speaking, assumes integer
manipulations to MAX INT (i.e., typically 232 on 32-bit architectures).

tor. For a sequence of reads (r) and writes (w) operations, a
write for an arbitrary key is designated as tainted:

history
··· ,r,r,w,w,r,r,r,w,r,r,w,r,wtaint···−−−−−−−−−−−−−−−−−−−→

We now assert the specification that this taint will even-
tually propagate to each replica’s local store. Intuitively, the
write that was chosen to be tainted will taint the value writ-
ten, and this taint will persist as the value moves across the
network, including when it is stored in the hint store and the
pending store, before being written to the local store. Taints
are persistent and will not disappear once they reach the local
store. Hence demanding that the local stores eventually get
tainted captures the property that the chosen write is eventu-
ally delivered at least once to every local store.

Note that the tainted values are ghost fields which the sys-
tem is agnostic to, and hence proving the above property for
an arbitrary write in fact ensures that all writes are eventu-
ally delivered.

Proving the taint-based specification: To prove the speci-
fication we introduce several ghost fields:
(a) ls tainted nodes, the set of replicas that have updated

their local store with the tainted write,
(b) hs tainted nodes, the set of replicas for which the coor-

dinator has stored the tainted write operation as a hint in
its hint store, and

(c) ps tainted nodes, the set of replicas for which the tainted
write has been issued, but its delivery is pending on the
network.

We add ghost-code to maintain the semantics of the taint
in various methods, including put, network and handoff hint.
Every time any of these methods transfers values, we ensure
that the taints also get propagated. At local stores, when a
value is written, the value at the local store is tainted if it
either already had a tainted value or the new value being
written is tainted; otherwise, it remains untainted. (In fact,
the taint-based store can itself be seen as an operation based
CRDT which never loses the taints.) Furthermore, the ghost
fields described above, which are set abstractions of the
related stores, are also kept up to date using ghost updates.

For eventual delivery we want to prove that, when all
replicas remain available and all the read/write operations
have stopped, regardless of how all concurrent operations are
scheduled, the tainted write operation is indeed eventually
propagated to the local stores of all the replicas.

We model eventual taintedness of stores as a termina-
tion property by modeling a schedule harness that takes over
the scheduler, and arbitrarily schedules network and hand-
off hint threads until the taint has propagated to all replicas.
The termination of this harness then proves eventual tainted-
ness, which in turn proves eventual delivery. In the schedule
harness, the permanent failures thread is not scheduled since
we assume only transient failures can occur.

9

_(invariant (\forall int j;
(j >= 0 && j < PREFLIST_SIZE) ==>
(ls->tainted_nodes[pl->pref_list[coord+j]]

|| hs->tainted_nodes[pl->pref_list[coord+j]]
|| ps->tainted_nodes[pl->pref_list[coord+j]])))

_(decreases hs->size + 2 * ps->size)

Figure 4. The invariant and the decreases clause for the
scheduler in the hinted-handoff protocol

In order to prove termination of the harness, we specify
a (safety) invariant for the scheduler and specify a ranking
function for arguing the termination of this method. The
invariant for the scheduler loop states that for every replica
responsible for the tainted key, either its local store is tainted
or there is a tainted write pending in the network for it,
or there is a hint in the corresponding coordinator which
has a tainted write for it. More precisely, for each replica
responsible for the tainted key, we demand that the replica
is present in one of the ghost-sets, namely, ps tainted nodes,
hs tainted nodes, and ls tainted nodes:
∀r.(r ∈ ps tainted nodes ∨ r ∈ hs tainted nodes

∨ r ∈ ls tainted nodes)
where the quantification is over replicas r responsible for
the tainted key. In VCC, this invariant is written as shown in
Figure 4.

The ranking function for the scheduler is a function that
quantifies, approximately, the time it would take for the sys-
tem to reach a consistent state. In our case, the ranking func-
tion |hint store|+ 2 · |pending store| suffices. Note that we
prove that the rank decreases with the scheduling of any
thread, thereby guaranteeing termination. In VCC, Figure 4
shows the decreases clause that represents this ranking func-
tion. Since the network thread can remove a write from the
pending store and can insert it into the hint store, the factor
2 in the ranking function is necessary.

5.3 Verifying the read-repair protocol
As explained in Section 3, we want to verify that the read-
repair protocol maintains eventual consistency in the pres-
ence of permanent failures (as stated in Result#2 in Sec-
tion 3.2). We prove this result both when hinted-handoff is
turned on as well as when it is disabled (we capture whether
hinted-handoff is enabled/disabled using a macro directive,
and prove both versions correct). For simplicity of presenta-
tion we only explain here the case when the hinted handoff
protocol is disabled.

Recall that permanent failures could: (a) modify the local
store by setting them to default values, (b) remove an opera-
tion from the pending store, and (c) destroy the hint store.

For eventual consistency we want to prove that when
all the write operations have successfully returned to the
client, then after only a finite number of read operations
on a key, the read-repair mechanism ensures that the set
of R available replicas will converge. Note that we want to

prove this property when the replicas in R remain available
throughout these read operations, but regardless of how all
the other operations are scheduled concurrently with read-
repair.

When the writes stop and only the read of a particular key
occurs (infinitely often), we write a schedule harness that
takes over the scheduler at this point, in order to argue that
consistency is eventually reached (similar to the verification
of the hinted-handoff protocol).

The schedule harness arbitrarily schedules the reads and
the repairs, the network threads and permanent failures, but
restricts it to not modify local stores of replicas in R (since
replicas in R cannot fail any longer). The harness has an
outer loop that continually issues reads of the key and ex-
ecutes the read-path and the read-repair with interference
from other threads modeling the system (network and per-
manent failures). This loop terminates only when conver-
gence is reached, and hence our task is to prove that the loop
terminates.

We verify the harness again by specifying safety invari-
ants and a ranking function. The ranking function for the
scheduler is that the size of the pending store, | pending store |,
decreases with every loop.

Intuitively, an unbounded number of read-repairs get exe-
cuted, and if the network thread does not interfere during the
read-repair, then the replicas will reach a consistent state.
However, if the network does interfere (delivering pending
writes to replicas), then read-repair may not succeed in sync-
ing the replicas in this round, but the size of the pending set
must necessarily decrease.

5.4 Verification Statistics
We performed the verification on an Intel CORE-i7 laptop
with 8 GB of RAM, running Windows 8 and using Visual
Studio 2012 with VCC v2.3 as a plugin. Our verification
model consists of about 1500 lines of code and annotations,
where about 900 lines are executable C code and the rest are
annotations (not seen by the C compiler). The annotations
comprise ghost code (20%) and invariants (80%) 5. The total
time taken for the verification of the whole model is around
a minute. Since the verification is modular, we focus on
verifying one function at a time while modeling the protocol.
Verification of each function takes around 5 seconds. The
verification is hence highly interactive: we add small chunks
of executable code and annotations, run the verifier, refine
the code or annotations, re-run the verification, and iterate.

6. Discussion: Experience and Lessons
We now describe our experience and lessons learned while
modeling and verifying the protocols.

Lesson 1: Building models is an iterative process of refine-
ment, and it takes time. We did not build the model in one

5 The web-site for the project and our code is here: http://web.engr.
illinois.edu/˜pek1/cpm/

10

http://web.engr.illinois.edu/~pek1/cpm/
http://web.engr.illinois.edu/~pek1/cpm/

day. Our effort spanned a period of 15 months, with about
6 person months of effort for modeling and verification. Ini-
tially, we built a coarse-grained model that eschewed paral-
lelism of reads/writes in favor of building complete and cor-
rect models for the store mechanisms and for failures. Even
with this initial coarse-grained model, we came up with the
taint-based specification and realized that this specification
was actually capturing not eventual consistency but rather
eventual delivery (Section 3.1).

We then retrofitted the model with concurrency, which
led to a much more complex and lengthy proof that took into
account interactions of threads. The concurrency retrofitting
required the most effort, as it involved learning the intrica-
cies of our verification platform, VCC, and its concurrency
verification model. In fact, when retrofitting concurrency, we
found errors in our read-repair specification (see below and
see Section 3.2).
Lesson 2: The quest to prove results lead to surprising
outcomes after building, writing, and verifying with mod-
els. The result that a single read-repair does ensure even-
tual consistency of the stable live nodes was a result we
wrongly believed in before the verification. In fact, in the
coarser-grained concurrency model we built for it, we were
able to prove the result, but this proof fell through when we
retrofitted it with fine-grained concurrency. The inability to
establish a global ranking function that ensured consistency
was reached in finite time, –this fact led us to disbelieving it
and disproving it. This led us to believe that an unbounded
number of reads would give eventual consistency, provided
the scheduler fairly scheduled the system. However, when
we proved the property, we realized that a fair scheduler isn’t
necessary, which was another surprise in itself(Result#2 in
Section 3.2).

Lesson 3: Non-obvious and unknown results can arise out
of building, writing, and verifying with models. The taint-
based modeling of eventual consistency led us to realize
that the hinted-handoff protocol actually was ensuring even-
tual delivery, and would hence work for any CRDT register.
Proving this property led us to the transient failure model
that is needed for this protocol to ensure eventual delivery.
The result that, under transient failures, hinted-handoff en-
sures strong eventual consistency of any idempotent CRDT
(Corollary#1, in Section 3.1) was a result that we did not
know before, and resulted directly from the abstract proof.

We also realized that CRDTs for counters in the liter-
ature are not idempotent [58]— these CRDTs assume that
messages are delivered precisely once (as opposed to at least
once), and we realized that systems like Riak and Cassan-
dra do not assure delivery precisely once, even when only
transient failures are present. This explained to us the pre-
dominance of purely state-based implementation of CRDTs
in systems such as Riak [5].

Lesson 4: Systems developers need to be building and writ-
ing models either concurrent with or prior to, building

the actual system. As a direct consequence of the above
Lessons 2 and 3, we conclude that building models can aid
systems developers understand the targeted properties of the
system being built, with great clarity. The verification expe-
rience helped us to understand protocols much better than
we had previously.

The building of our model and testing this model was
useful in both building a faithful model as well as in under-
standing it, in expressing assumptions on the failure model,
and figuring out the correct specifications. The model gave
us a concrete vocabulary (especially data-structures like the
pending set, which captures the messages in the network,
etc.) to reason more formally even in discussions (similar to
the way a formal modeling on paper gives such a vocabu-
lary). We believe building models can inform the vocabulary
that developers use in talking about their system and its in-
ternals at the development stage, and holds the potential to
minimize bugs arising out of miscommunication.

There is corroborating evidence from Amazon researchers [54,
55] that building such models and verifying them gives ad-
ditional benefits of understanding protocols, making design
decisions, and adding features to protocols. Note that Ama-
zon used TLA+ to model protocols (in [54], they discuss
why they chose TLA, and find VCC also met most of their
requirements). However, in their work, they did not verify
the protocols, but only model-checked them (i.e., systemat-
ically tested them) for all interleavings for small instantia-
tions of the system.

Lesson 5: Modeling in a high-level language closer to im-
plementation (like C) is programmer-friendly, testable, and
supports verification. We believe that modeling in C of-
fers many advantages (in particular, in comparison with lan-
guages such as TLA). First, systems engineers understand C,
and the modeling entails building a simulator of the system,
which is something engineers do commonly for distributed
systems anyway. Being executable, the model can be subject
to standard testing, where engineers can write test harnesses,
tweaking the environment’s behavior and fault models, sim-
ply by writing code. Third, for systematic testing (model-
checking), we have powerful tools such as CHESS that can
systematically explore the behavior of the system, exploring
non-determinism that arises from interleavings. Fourth and
finally, the ability to prove programs using pre/post condi-
tions and invariants, using VCC, gives a full fledged verifi-
cation platform to prove the entire protocol correct, where
most reasoning is pushed down to automated logic-solvers.

We advocate certified program models as a sweet-spot for
modeling, testing, and verification. It abstracts from the real
system, but in doing so captures many instantiations and ver-
sions of these systems. And yet is written in code, allow-
ing for easier model-building and testing. Finally, it affords
full fledged verification using mostly-automated verification
platforms.

11

7. Related Work
The CAP theorem [21, 49] indicates that a distributed system
that can tolerate partition failures can either provide strong
data consistency (eg., linearizability, sequential consistency)
or high availability. Strong consistency guarantees like lin-
earizability can be provided using a single commit point en-
sured by two-phase/three-phase commit protocols [61] or
by distributed consensus (eg., Paxos [45]). As opposed to
strong consistency, most existing distributed systems pro-
vide only weaker eventual consistency guarantees, which
roughly mean that when the updates stop the entire sys-
tem eventually converges to the same value. There are also
known some other models of consistency such as consistent
prefix, bounded staleness, monotonic reads, and read-my-
writes [12, 22, 62].

Amazon’s use of formal techniques [54, 55] for increas-
ing confidence in the correctness of their production systems
is in the same spirit as this work. The engineers at Amazon
have successfully used TLA+ [44] to formally specify the
design of various components of distributed systems. The
formal TLA+ specifications are executable like our program
models and these design specifications have been system-
atically explored using a model checker to uncover several
subtle bugs in these systems. However, instead of model-
ing distributed algorithms in TLA+, we model them as C
programs. Newcombe et al. [54, 55] acknowledge that mod-
eling systems in a high-level language like C increases the
productivity of the engineers. More importantly, in addition
to checking the models using model checkers up to a cer-
tain trace length, a model written in C lends itself to mostly
automated verification using tools like VCC that utilize au-
tomated constraint solvers, and that can verify unbounded
instances of the system.

Previous attempts at formal modeling of distributed
systems for design and verification include the Farsite
project [18] and the modeling of Pastry protocol for dis-
tributed hash-tables [51] using TLA; the modeling of the
Chord ring maintenance protocol using Alloy [67]; the ver-
ification of consensus algorithms using Isabelle [27]; and
the verification of event-driven device drivers written in the
P language [32, 33]. There have also been efforts towards
formally modeling key-value stores like Cassandra using
Maude [48]. In this work, consistency properties are ex-
pressed in Maude using linear temporal logic (LTL) formu-
lae. This model checking approach either is not exhaustive or
is exhaustive on bounded instances while ours is exhaustive
on unbounded instances.

In “Paxos Made Live” [25], the authors show that directly
building a system that implements an algorithm that is as
well-studied as the Paxos consensus algorithm is a non-
trivial task. In our experience, also as in Amazon’s [54, 55],
modeling algorithms as programs is a good intermediate
step that allows one to quickly prototype the algorithm,

understand issues concerning the implementation, explore
the design space, and also test and verify the design.

Recently, there has been work on programming languages
that ease development of distributed systems, in particu-
lar, with respect to consistency properties at the application
level [14, 23, 60] and failfree idempotence [56]. Kuru et
al. [42] verify properties of transactional programs running
under a relaxed scheme that provides snapshot isolation.

In a recent work [65], the authors have used Coq to imple-
ment distributed algorithms that are verified. In [19, 22, 24],
the authors explore logical mechanisms for specifying and
verifying properties over replicated data types. Deductive
verification using automatic tools, such as VCC [29] and
Dafny [47] has been extensively used for verifying systems
in domains other than distributed systems. Some of the ex-
amples are: verifying a hypervisor for the isolation prop-
erty [46], verifying operating systems like Verve [66] and
ExpressOS [50] for security, verifying the L4 microkernel
for functional correctness [40, 41] and verifying high-level
applications for end-to-end security [35].

8. Conclusions
In this paper we have shown how the philosophy of certi-
fied program models can be used to verify and find fault-
tolerance violations in distributed systems, with a specific
focus on key-value/NoSQL storage systems. We have ver-
ified both eventual delivery of the hinted-handoff protocol
under transient failures (which ensures strong eventual con-
sistency for any store maintained as a CmRDT register)
as well as eventual consistency of the read-repair protocol
when arbitrary number of reads are issued. We also discov-
ered several surprising counter-examples during the verifi-
cation for related conjectures, and the experience helped us
develop a firm understanding of when and how these proto-
cols guarantee eventual consistency.

Based on our experience, we believe the notion of certi-
fied program models is applicable to a broad swathe of dis-
tributed systems properties beyond hinted-handoff and read
repair. For instance, while we have assumed a CRDT ab-
straction, some artifacts of the way they are implemented
in systems deserve verification— for instance, Riak’s use of
vector clocks (now called Causal Context) and the associ-
ated conflict resolution and pruning mechanisms are worth
verifying for correctness, even in the case where there are
no failures. The verification of how counters (and in general
other CRDTs) work in today’s distributed systems in tan-
dem with eventual consistency protocols, and the idempo-
tence guarantees on them, is another worthy target. Beyond
distributed systems, properties of file systems are also a good
match for certified program models, e.g., works like [13, 28].
In these systems the ordering and consistency of file sys-
tem operations are decoupled, and verifying that the desired
ordering and consistency properties hold, under failures or
otherwise, is an interesting future direction.

12

References
[1] Amazon: milliseconds means money. http://goo.gl/

fs9pZb.

[2] Basho Riak. http://basho.com/riak/.

[3] Call me maybe: Cassandra. https://aphyr.com/
posts/294-call-me-maybe-cassandra/.

[4] Cassandra. http://cassandra.apache.org/.

[5] Data Structures in Riak. https://vimeo.com/
52414903.

[6] Data Types. http://docs.basho.com/riak/
latest/theory/concepts/crdts/.

[7] HBase. http://hbase.apache.org/.

[8] Market research media, NoSQL market forecast 2013-
2018. http://www.marketresearchmedia.com/
?p=568.

[9] NoSQL Meets Bitcoin and Brings Down Two Ex-
changes: The Story of Flexcoin and Poloniex.
http://hackingdistributed.com/2014/04/
06/another-one-bites-the-dust-flexcoin/.

[10] Project Voldemort. http://goo.gl/9uhLoU.

[11] ABADI, D. Consistency tradeoffs in modern distributed
database system design: CAP is only part of the story. IEEE
Computer 45, 2 (2012), 37–42.

[12] ABADI, D. Consistency tradeoffs in modern distributed
database system design: Cap is only part of the story. Com-
puter 45, 2 (Feb. 2012), 37–42.

[13] ALAGAPPAN, R., CHIDAMBARAM, V., PILLAI, T. S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Beyond storage apis: Provable semantics for storage stacks. In
15th Workshop on Hot Topics in Operating Systems (HotOS
XV) (Kartause Ittingen, Switzerland, May 2015), USENIX
Association.

[14] ALVARO, P., CONWAY, N., HELLERSTEIN, J., AND MAR-
CZAK, W. R. Consistency analysis in bloom: a CALM and
collected approach. In CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings (2011), pp. 249–260.

[15] APT, K. R. Ten years of hoare’s logic: A survey—part
i. ACM Trans. Program. Lang. Syst. 3, 4 (Oct. 1981), 431–
483.

[16] BAILIS, P., AND GHODSI, A. Eventual consistency today:
Limitations, extensions, and beyond. Queue 11, 3 (Mar.
2013), 20:20–20:32.

[17] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J.,
KHORLIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD,
A., AND YUSHPRAKH, V. Megastore: Providing scalable,
highly available storage for interactive services. In Proceed-
ings of the Conference on Innovative Data system Research
(CIDR) (2011), pp. 223–234.

[18] BOLOSKY, W. J., DOUCEUR, J. R., AND HOWELL, J. The
farsite project: A retrospective. SIGOPS Oper. Syst. Rev. 41,
2 (Apr. 2007), 17–26.

[19] BOUAJJANI, A., ENEA, C., AND HAMZA, J. Verifying
eventual consistency of optimistic replication systems. In
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (New York, NY,
USA, 2014), POPL ’14, ACM, pp. 285–296.

[20] BREWER, E. A certain freedom: Thoughts on the CAP theo-
rem. In Proc. ACM PODC (2010), pp. 335–335.

[21] BREWER, E. A. Towards robust distributed systems (Invited
Talk). In Proc. ACM PODC (2000).

[22] BURCKHARDT, S. Principles of eventual consistency. Foun-
dations and Trends in Programming Languages 1, 1-2 (2014),
1–150.

[23] BURCKHARDT, S., FÄHNDRICH, M., LEIJEN, D., AND

WOOD, B. P. Cloud types for eventual consistency.
In Proceedings of the 26th European Conference on
Object-Oriented Programming (Berlin, Heidelberg, 2012),
ECOOP’12, Springer-Verlag, pp. 283–307.

[24] BURCKHARDT, S., GOTSMAN, A., YANG, H., AND ZA-
WIRSKI, M. Replicated data types: Specification, verification,
optimality. SIGPLAN Not. 49, 1 (Jan. 2014), 271–284.

[25] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J.
Paxos made live: An engineering perspective. In Proceedings
of the Twenty-sixth Annual ACM Symposium on Principles of
Distributed Computing (New York, NY, USA, 2007), PODC
’07, ACM, pp. 398–407.

[26] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C.,
WALLACH, D. A., BURROWS, M., CHANDRA, T., FIKES,
A., AND GRUBER, R. E. Bigtable: A distributed storage
system for structured data. ACM Trans. Comput. Syst. 26, 2
(2008).

[27] CHARRON-BOST, B., AND MERZ, S. Formal verification of a
Consensus algorithm in the Heard-Of model. Intl. J. Software
and Informatics 3, 2-3 (2009), 273–304.

[28] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Consistency with-
out ordering. In Proceedings of the 10th USENIX conference
on File and Storage Technologies, FAST 2012, San Jose, CA,
USA, February 14-17, 2012 (2012), p. 9.

[29] COHEN, E., DAHLWEID, M., HILLEBRAND, M., LEINEN-
BACH, D., MOSKAL, M., SANTEN, T., SCHULTE, W., AND

TOBIES, S. VCC: A practical system for verifying concurrent
c. In TPHOLs ’09 (2009), pp. 23–42.

[30] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULA-
PATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMA-
NIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo: Ama-
zon’s highly available key-value store. In SOSP ’07 (2007),
pp. 205–220.

[31] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LAR-
SON, J., SHENKER, S., STURGIS, H., SWINEHART, D., AND

TERRY, D. Epidemic algorithms for replicated database main-
tenance. In Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing (New York, NY, USA,
1987), PODC ’87, ACM, pp. 1–12.

[32] DESAI, A., GARG, P., AND MADHUSUDAN, P. Natural
proofs for asynchronous programs using almost-synchronous
reductions. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Lan-
guages & Applications (New York, NY, USA, 2014),
OOPSLA ’14, ACM, pp. 709–725.

13

http://goo.gl/fs9pZb
http://goo.gl/fs9pZb
http://basho.com/riak/
https://aphyr.com/posts/294-call-me-maybe-cassandra/
https://aphyr.com/posts/294-call-me-maybe-cassandra/
http://cassandra.apache.org/
https://vimeo.com/52414903
https://vimeo.com/52414903
http://docs.basho.com/riak/latest/theory/concepts/crdts/
http://docs.basho.com/riak/latest/theory/concepts/crdts/
http://hbase.apache.org/
http://www.marketresearchmedia.com/?p=568
http://www.marketresearchmedia.com/?p=568
http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/
http://hackingdistributed.com/2014/04/06/another-one-bites-the-dust-flexcoin/
http://goo.gl/9uhLoU

[33] DESAI, A., GUPTA, V., JACKSON, E., QADEER, S., RAJA-
MANI, S., AND ZUFFEREY, D. P: Safe asynchronous event-
driven programming. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (New York, NY, USA, 2013), PLDI ’13, ACM,
pp. 321–332.

[34] GILBERT, S., AND LYNCH, N. A. Perspectives on the CAP
theorem. IEEE Computer 45, 2 (2012), 30–36.

[35] HAWBLITZEL, C., HOWELL, J., LORCH, J. R., NARAYAN,
A., PARNO, B., ZHANG, D., AND ZILL, B. Ironclad apps:
End-to-end security via automated full-system verification. In
11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-
8, 2014. (2014), J. Flinn and H. Levy, Eds., USENIX Associ-
ation, pp. 165–181.

[36] HERLIHY, M. P., AND WING, J. M. Linearizability: A
correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst. 12, 3 (1990), 463–492.

[37] HOARE, C. A. R. An axiomatic basis for computer program-
ming. Commun. ACM 12, 10 (Oct. 1969), 576–580.

[38] JONES, C. B. Tentative steps toward a development method
for interfering programs. ACM Trans. Program. Lang. Syst. 5,
4 (1983), 596–619.

[39] KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY,
R., LEVINE, M., AND LEWIN, D. Consistent hashing and
random trees: Distributed caching protocols for relieving hot
spots on the world wide web. In Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing (New
York, NY, USA, 1997), STOC ’97, ACM, pp. 654–663.

[40] KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., HEISER,
G., COCK, D., DERRIN, P., ELKADUWE, D., ENGEL-
HARDT, K., KOLANSKI, R., NORRISH, M., SEWELL, T.,
TUCH, H., AND WINWOOD, S. sel4: formal verification of an
operating-system kernel. Commun. ACM 53, 6 (2010), 107–
115.

[41] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK,
J., COCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT,
K., KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H.,
AND WINWOOD, S. sel4: formal verification of an OS ker-
nel. In Proceedings of the 22nd ACM Symposium on Operat-
ing Systems Principles 2009, SOSP 2009, Big Sky, Montana,
USA, October 11-14, 2009 (2009), J. N. Matthews and T. E.
Anderson, Eds., ACM, pp. 207–220.

[42] KURU, I., OZKAN, B. K., MUTLUERGIL, S. O., TASIRAN,
S., ELMAS, T., AND COHEN, E. Verifying programs under
snapshot isolation and similar relaxed consistency models. In
9th ACM SIGPLAN Workshop on Transactional Computing
(2014).

[43] LAKSHMAN, A., AND MALIK, P. Cassandra: a decentralized
structured storage system. ACM SIGOPS OSR 44, 2 (2010),
35–40.

[44] LAMPORT, L. The TLA Home Page. http:
//research.microsoft.com/en-us/um/
people/lamport/tla/tla.html.

[45] LAMPORT, L. The part-time parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

[46] LEINENBACH, D., AND SANTEN, T. Verifying the microsoft
hyper-v hypervisor with vcc. In Proceedings of the 2Nd World
Congress on Formal Methods (Berlin, Heidelberg, 2009), FM
’09, Springer-Verlag, pp. 806–809.

[47] LEINO, K. R. M. Dafny: An automatic program verifier for
functional correctness. In Logic for Programming, Artificial
Intelligence, and Reasoning - 16th International Conference,
LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers (2010), E. M. Clarke and A. Voronkov, Eds.,
vol. 6355 of Lecture Notes in Computer Science, Springer,
pp. 348–370.

[48] LIU, S., RAHMAN, M., SKEIRIK, S., GUPTA, I., AND

MESEGUER, J. Formal modeling and analysis of cassan-
dra in maude. In Formal Methods and Software Engineer-
ing, S. Merz and J. Pang, Eds., vol. 8829 of Lecture Notes in
Computer Science. Springer International Publishing, 2014,
pp. 332–347.

[49] LYNCH, N., AND GILBERT, S. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News 33, 2 (2002), 51–59.

[50] MAI, H., PEK, E., XUE, H., KING, S. T., AND MADHUSU-
DAN, P. Verifying security invariants in expressos. In Pro-
ceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 293–304.

[51] MERZ, S., LU, T., AND WEIDENBACH, C. Towards Verifi-
cation of the Pastry Protocol using TLA+. In 31st IFIP Inter-
national Conference on Formal Techniques for Networked and
Distributed Systems (Reykjavik, Iceland, June 2011), R. Bruni
and J. Dingel, Eds., vol. 6722 of FMOODS/FORTE 2011.

[52] MUSUVATHI, M., AND QADEER, S. Iterative context bound-
ing for systematic testing of multithreaded programs. In Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (2007), PLDI
’07, pp. 446–455.

[53] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing
Heisenbugs in concurrent programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and
Implementation (2008), OSDI’08, pp. 267–280.

[54] NEWCOMBE, C. Why amazon chose TLA +. In Abstract
State Machines, Alloy, B, TLA, VDM, and Z - 4th International
Conference, ABZ 2014, Toulouse, France, June 2-6, 2014.
Proceedings (2014), pp. 25–39.

[55] NEWCOMBE, C., RATH, T., ZHANG, F., MUNTEANU, B.,
BROOKER, M., AND DEARDEUFF, M. How amazon web
services uses formal methods. Commun. ACM 58, 4 (Mar.
2015), 66–73.

[56] RAMALINGAM, G., AND VASWANI, K. Fault tolerance
via idempotence. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (New York, NY, USA, 2013), POPL ’13,
ACM, pp. 249–262.

[57] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZA-
WIRSKI, M. A comprehensive study of Convergent and Com-

14

http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html
http://research.microsoft.com/en-us/um/people/lamport/tla/tla.html

mutative Replicated Data Types. Research Report RR-7506,
Jan. 2011.

[58] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZA-
WIRSKI, M. Conflict-free replicated data types. In Proceed-
ings of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems (2011), SSS’11,
pp. 386–400.

[59] SHAPIRO, M., PREGUIÇA, N. M., BAQUERO, C., AND ZA-
WIRSKI, M. Convergent and commutative replicated data
types. Bulletin of the EATCS 104 (2011), 67–88.

[60] SIVARAMAKRISHNAN, K., KAKI, G., AND JAGANNATHAN,
S. Declarative programming over eventually consistent data
stores. In PLDI 2015, Proceedings of the ACM SIGPLAN
2015 Conference on Programming Language Design and Im-
plementation (Portland, OR, USA, June 15–17, 2015).

[61] SKEEN, D., AND STONEBRAKER, M. A formal model of
crash recovery in a distributed system. IEEE Trans. Softw.
Eng. 9, 3 (May 1983), 219–228.

[62] TERRY, D. Replicated data consistency explained through
baseball. Commun. ACM 56, 12 (Dec. 2013), 82–89.

[63] TURING, A. The early british computer conferences. MIT
Press, Cambridge, MA, USA, 1989, ch. Checking a Large
Routine, pp. 70–72.

[64] VOGELS, W. Eventually consistent. ACM CACM (2009), 40–
44.

[65] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi:
A framework for implementing and formally verifying dis-
tributed system. In PLDI 2015, Proceedings of the ACM SIG-
PLAN 2015 Conference on Programming Language Design
and Implementation (Portland, OR, USA, June 15–17, 2015).

[66] YANG, J., AND HAWBLITZEL, C. Safe to the last instruc-
tion: automated verification of a type-safe operating system.
Commun. ACM 54, 12 (2011), 123–131.

[67] ZAVE, P. Using lightweight modeling to understand chord.
SIGCOMM Comput. Commun. Rev. 42, 2 (Mar. 2012), 49–57.

15

	Introduction
	Key-value/NoSQL Storage Systems and Eventual Consistency
	Contributions of this Paper

	Background
	Key-value stores
	Eventual Consistency
	Anti-entropy Protocols
	Read-Repair (RR)
	Hinted-Handoff (HH)

	Characterizing and proving eventual consistency
	Properties of the Hinted-Handoff Protocol
	Properties of the Read-repair Protocol
	Read-repair and CRDT

	Program Models for Protocols
	Verification of Anti-entropy protocols
	Verification Methodology
	Verifying the hinted-handoff protocol
	Verifying the read-repair protocol
	Verification Statistics

	Discussion: Experience and Lessons
	Related Work
	Conclusions

