
A New Reduction for Event-driven Distributed Programs

Ankush Desai
University of California, Berkeley

ankush@eecs.berkeley.edu

Pranav Garg
University of Illinois at

Urbana-Champaign
garg11@illinois.edu

P. Madhusudan
University of Illinois at

Urbana-Champaign
madhu@illinois.edu

Abstract
We consider the problem of provably verifying that an asyn-
chronous message-passing system satisfies its local asser-
tions. We present a novel reduction scheme for asynchronous
event-driven programs that finds almost-synchronous invari-
ants— invariants consisting of global states where mes-
sage buffers are close to empty. The reduction finds almost-
synchronous invariants and simultaneously argues that they
cover all local states. We show that asynchronous programs
often have almost-synchronous invariants and that we can
exploit this to build natural proofs that they are correct. We
implement our reduction strategy, which is sound and com-
plete, and show that it is more effective in proving programs
correct as well as more efficient in finding bugs in several
programs, compared to current search strategies which al-
most always diverge. The high point of our experiments
is that our technique can prove the Windows Phone USB
Driver written in P [4] correct for the receptiveness prop-
erty, which was hitherto not provable using state-of-the-art
model-checkers.

1. Introduction
Asynchronous, event-driven programming paradigm, which
involves concurrently evolving components communicating
using messages and reacting to input events, is a popular
paradigm that is widely used today to model distributed pro-
grams communicating on a network (eg., client-server com-
munication, web programs) or even programs (like device
drivers) running on a single-processor or a multi-core sys-
tem. In this work, we wish to build techniques that provably
verify such asynchronous event-driven programs against lo-
cal assertions. There are many sources of infinity in the ver-
ification of event-driven programs— the local data, the mes-

sage buffer sizes, and the number of spawned processes be-
ing the primary ones, and in general the problem is undecid-
able. Our primary concern in this work is to tackle the asyn-
chrony of message passing which causes unbounded mes-
sage buffers. Our goal is to effectively and efficiently prove
(as opposed to systematically test) event-driven programs
correct, when the number of processes and the local data
are bounded but when message buffers are unbounded (it is
known that the reachability problem for this restricted set-
ting consisting of finite state machines communicating via
unbounded message buffers is also undecidable [2]).

Though the problem at hand and the proof technique we
describe in this paper is very general, in this work, we specif-
ically look at programs written in P [4], which is a domain-
specific language for event-driven programs developed re-
cently at Microsoft Research for building the Windows 8
USB driver stack. P programs consist of a collection of in-
teracting state machines that communicate with each other
by exchanging messages. The primary specification that P
programs are required to satisfy in [4] is responsiveness–
each state declares the precise set of messages a machine
can handle and the precise set of messages it will defer, im-
plicitly asserting that all other messages are not expected by
the designer to arrive when in this state; receiving a mes-
sage outside these sets hence signals an error, and in de-
vice drivers, often leads drivers to crash. The work reported
in [4] includes a systematic testing tool for model-checking
device driver models for the responsiveness property. How-
ever, such model-checking seldom succeeds in proving the
drivers correct, since there are many sources of infinity, in-
cluding message buffer sizes.

Consider the simple scenario where a machine p sends a
machine q unboundedly many messages, like in a producer-
consumer setting (See Figure 1). Even in this simple sce-
nario, systematic model-checkers would fail to terminate
checking local assertions, even when the local data stored at
p and q is finite, since message buffers get unbounded. For
example, the Zing model-checker [1] used to systematically
test P programs in [4] will fail to finish, since the message
buffers are unbounded and are part of the global state that’s
explored.



Figure 1:
Producer
Consumer
Scenario

Partial-order reduction (POR) tech-
niques [6, 7] have been traditionally used
to reduce the number of interleavings
while exploring the set of reachable states
for such concurrent systems. In an ideal
scenario, these techniques explore every
partial-order using just one linearization.
However, POR techniques do not neces-
sarily ensure termination, and are of lit-
tle help in this case. In the above exam-
ple, a send from p to q followed by the
receive takes the system back to its ini-
tial state and hence induces a cycle in the
state space. In view of this, after the send from p to q has
been explored, the ample set of transitions [3, 6] would con-
sist of the receive as well as the successive send. Each global
state along the execution that takes the send would be differ-
ent because the message buffer content is different in each
step, and the exploration will not terminate.

Almost-synchronous Invariants: Our primary thesis is
that almost-synchronous invariants often suffice to prove
asynchronous event-driven programs correct with respect
to local assertions, and furthermore, a search for these in-
variants is also more effective in finding bugs. Intuitively,
almost-synchronous states are those where the message
buffers are close to empty, and almost-synchronous invari-
ants are collections of such states that ensure that all lo-
cal states have been covered. For instance, in the producer-
consumer example above, exploring the sends of p imme-
diately followed by the receive in q discovers an almost-
synchronous invariant where message buffers are bounded
by 1, though blindly exploring the state-space would never
lead to termination.

The primary contribution of our work is a sound and com-
plete reduction scheme that, unlike POR, explores interleav-
ings (involving almost-synchronous states) that keep mes-
sage buffers to a minimal size, while at the same time finding
a closure argument that argues that all local states have been
discovered, at which point we can terminate.

Natural Proofs: The technique set forth in this paper is
a method involving natural proofs. Intuitively, the idea be-
hind natural proofs is to find some simplicity of real-world
instances and exploit them to find a simple proof of correct-
ness, even when the general verification problem may be
undecidable. The problem of checking whether an asyn-
chronous program is correct, even when the number of
machines and local data are bounded, is an undecidable
problem [2]. Our thesis is that asynchronous systems often
have a reasonably small set of almost-synchronous global
states that can be used as an invariant to prove the program
correct. Finding these almost-synchronous invariants often
suffices in capturing the dynamics of event-driven, asyn-
chronous programs and natural proofs that target finding
such invariants can prove their correctness efficiently. We

discover almost-synchronous invariants in this work using
state-space exploration and model-checking for a variety of
asynchronous systems.

Implementation and Evaluation: We have implemented
our reduction mechanism for discovering almost-synchronous
invariants for P programs. Our invariant synthesis is built
over the Zing model-checker [1], adapting it to explore the
state-space of P programs using our reduction strategy. The
existing systematic model-checker for P programs (also im-
plemented in Zing) [4] almost never terminates, and can fin-
ish exhaustive state-space exploration only when message
buffers are bounded in some fashion. We show however that
our reduction can handle such P programs without bounding
buffers. The high point of our experiments is the complete
verification of the USB Windows Phone Driver, which our
tool can prove receptive with no bound on message buffers,
a proof that has hitherto been impossible to achieve using
current model-checkers.

2. Main Idea: Almost-Synchronous
Reductions

The main idea of this paper is that almost-synchronous in-
variants suffice to find proofs of local assertions in event-
driven asynchronous programs. We present a reduction tech-
nique that is sound and complete and that constructs these in-
variants as a collection of almost-synchronous states of the
system.

Prioritizing receive events. The first rule of our almost-
synchronous reduction is to schedule receive-events when-
ever they are enabled, suppressing send-events. This rule
ensures that messages are removed from message queues
as soon as possible, thus ensuring message buffers are con-
tained, and as we show in practice, often bounded. In the
producer-consumer scenario in Figure 1, our reduction ex-
plores the linearization consisting of an unbounded number
of rounds, where in each round p sends to q followed by q
immediately receiving the message from p (due to receive
events being prioritized), thus exploring an essentially syn-
chronous interleaving where the message buffer is bounded
by 1. Furthermore, and very importantly, when exploring
this interleaving, the search will discover that the global
state, which includes the local states of all machines and the
contents of all message buffers, repeats and our exploration
procedure will terminate. This is entirely because the mes-
sage buffer gets constantly depleted causing the global state
to recur.

However, exploring synchronous interleavings (where
all sends enabled always have the matching receive events
immediately enabled and scheduled in the receiving pro-
cess) does not always suffice to prove a system correct,
which is why we need to explore almost-synchronous global
states and not just synchronous ones. As an example, con-



sider the scenario in Figure 2 where p wants to send
a message to q and q also is sending a message to p.

Figure 2:

Clearly, we cannot explore synchronous
messages at this point, and we need to let
these sends happen without their corre-
sponding receive events. It turns out that
in many asynchronous message-passing
programs, this scenario does occur (even
the simple elevator example in [4] has
such a scenario). However, it turns out
that the system often quickly recovers
where p after sending the message, soon gets to a receive
mode where it accepts the message from q, and similarly q,
after sending its message, soon receives the message from p.
Hence a careful execution of these sends followed by prior-
itizing receive-events over send-events often lets us recover
a synchronous state after a mild asynchronous excursion.

Enabling a subset of send events. What happens when
there are no receive events enabled in the current state?
Enabling all send events in this case is an option, but one
that might lead to the problem of unnecessarily flooding
message buffers. Our reduction technique on the other hand
choses a subset of these send events (based on the possible
communication amongst the machines in the system) such
that enabling just this subset of events is both sound and
complete.

Figure 3:

To understand this, let us
consider the example in Fig-
ure 3— here p is sending a
message to q, and q is send-
ing a message to r, where r
is able to receive messages
from either. In this case, our reduction will schedule the syn-
chronous send event from q to r. However to ensure com-
pleteness, our reduction might also need to enable the send
from p to q depending upon whether the machine p eventu-
ally sends a message to r or not. Consider the case where p,
after sending the message to q, sends a message to r (denoted
by the dotted arrow), and r receives this message before the
send-event of q happens. This execution will be missed if
we only scheduled the synchronous send from q to r in the
current state. Therefore, depending upon this statically deter-
mined communication information, if p is a potential sender
of r, our reduction enables both the sends of p and q. On
the other hand, if p is not a potential sender of r (and the
dotted arrow does not exist), our reduction enables just the
synchronous send from q to r.

In general, in every state, our reduction computes a subset
of machines called the destination set based on the possible
communication amongst the machines in the system, as well
as the communication pattern amongst them in current state.
From a given state, our reduction only enables those events
that send messages to machines in the destination set. In
figure 3, when p is a potential sender of r, the destination

set for the current state is {r, q} and, as mentioned above, our
reduction enables all the send transitions to them, i.e., sends
from p to q and from q to r.

Blocking a subset of machines. Whenever a reduction en-
ables only a subset of events from a given state, if there are
cycles in the original state space of the system, there is a
chance of missing exploring local states that are reachable
along (sequences of) actions that are not enabled. To cir-
cumvent this source of incompleteness and explore such lo-
cal states, our reduction allows a move that blocks all ma-
chines whose sends to the destination set were enabled/pri-
oritized. A machine once blocked is not allowed to transition
any longer. Also once blocked, all processes that are send-
ing messages to it are essentially sending messages that will
never get received, and hence they can send their messages
to ether, i.e., we can lose these messages and not store them
in the configuration at all. For the example in Figure 3, the
machines blocked in the current state will be p and q.

Given a system P, our reduction mechanism constructs
and explores a transition system PR such that the set of
reachable states of PR correspond to the reduced set of
global configurations of P that form an almost-synchronous
invariant of the system. As alluded to above, the states in
PR are of the form (C, B) where C is a configuration of the
original system P and B is a subset of blocked machines.
The informal algorithm for our reduction is as follows.

Given that the system PR is in an extended configuration
(C, B), we will explore the following transitions from it:

• If any machine is in receive mode and there is an un-
deferred message on its incoming queue, then we will
schedule all such receive events and disable all send
events.
• If no receives can happen, then we construct the set

X = destination-set(C, B). Then we schedule all send
events that send to some machine in X, including sends
emanating from X. Furthermore, we also enable a transi-
tion that blocks the unblocked senders to X.

Let ReachG be the set of reachable configurations of the
original system P, and let BadG be the set of its error config-
urations. Similarly, let ReachR be the set of configurations of
PR explored by our reduction and let BadR = {(C, B) | C ∈
BadG}. Then we can show that our reductions is both sound
and complete. Formally, we can prove the following theo-
rems:

Theorem 2.1 (Soundness). If some state (Ce, Be) ∈ ReachR∩

BadR, then there exists a configuration C′ ∈ ReachG∩BadG.

Theorem 2.2 (Completeness). If some configuration C ∈
ReachG ∩ BadG, then there exists C′, B′ such that (C′, B′) ∈
ReachR ∩ BadR.



Models
Lines Zing Model Checker Almost-synchronous Invariants

of code (with buffer bounds) (with no buffer bounds)
in P Bound on max Total Time State-space Total Time Program

occurrence of an number of (h:mm) exhaustively number of (h:mm) Proved
event in queue states Explored? states Correct?

Elevator 270 2 1.4 × 106 0:22 Yes 2.8 × 104 0:08 Yes
OSR 377 2 3.1 × 105 0:16 Yes 3.9 × 103 0:02 Yes

Truck Lifts 290 2 3.3 × 107 2:07 Yes 1.1 × 105 0:24 Yes
Time Sync (Linear Topology) 2200 4 7.4 × 1010 5:34 Yes 1.0 × 107 3:07 Yes

German 280 3 > 1 × 1012 * No 4.7 × 108 2:32 Yes
Windows Phone USB Driver 1440 3 > 1 × 1012 * No 2.4 × 109 3:48 Yes

* denotes timeout after 12 hours

Table 1: Results for proof based on almost-synchronous invariants for P.

Buggy
Zing Bounded Model Checker Almost-synchronous Invariants

Models
(with buffer bounds) (with no buffer bounds)

Bound on max occurrence Total number Time Bug Total number Time Bug
of an event in queue of states (h:mm) Found? of states (h:mm) Found?

Truck Lifts 2 950005 1:17 Yes 13453 0:14 Yes
Time Sync (Ring Topology) 4 * * No 129973 1:37 Yes

German 3 595723 0:44 Yes 2345 0:10 Yes
Windows Phone USB Driver 3 1616157 2:04 Yes 23452 0:38 Yes

* denotes timeout after 12 hours

Table 2: Results for bug finding using almost-synchronous invariants for P

3. Evaluation
In this section we briefly present an empirical evaluation of
our reduction approach for the verification of P programs
and also evaluate it for finding bugs. All the experiments re-
ported are performed on Intel Xeon E5-2440, 2.40GHz, 12
cores (24 threads), 160GB machine running 64 bit Windows
Server OS. We evaluate our approach on the following P
programs: the elevator controller model described in [4], the
OSR driver used for testing USB devices, the Truck lifts dis-
tributed controller protocol, time synchronization standards
protocol used for synchronization of nodes in distributed
systems, the German cache coherence protocol, and the Win-
dows Phone (WP) USB driver, which is the actual driver
shipped with the Windows Phone operating system.

Proving P programs: Message buffers in P can become
unbounded and the systematic exploration by Zing fails to
prove P programs correct in the presence of such behav-
iors [4]. Table 1 compares our reduction technique to the
exploration using the Zing bounded model checker [4] on
all the above mentioned P programs. We report the Zing re-
sults for an under-approximation of the actual state space
that bound the maximum number of occurrences of an event
in message buffers to a constant value. On the other hand,
our results are for the complete verification of the models,
where message buffers are unbounded.

Using our reduction technique, we were able to com-
pletely verify the Windows Phone (WP) driver and the Ger-
man protocol, while Zing failed to explore the state space
completely for these systems (even when message buffers
were bounded). We found that in our almost-synchronous
exploration, the size of message buffers never exceeded four,
indicating that the buffers remain bounded to a small size un-
der our reduction. Even for comparatively smaller models,
we were able to prove the models correct in much smaller
time as compared to Zing because of the large state space
reduction obtained.

Finding bugs in P programs: To demonstrate the sound-
ness of our approach, we created buggy versions of the
benchmark models by introducing known safety errors in
them. Table 2 compares results for our exploration technique
to the iterative depth-bounding [8] in Zing in terms of the
number of states explored and the time taken before finding
the bug. On our benchmarks, our reduction technique ex-
plores orders of magnitude less states and finds bugs much
faster than Zing for all the models. We expect a compari-
son with other bounding techniques like delay-bounding [5]
to give similar results and a detailed comparative study is
part of future work. Our experiments suggest that almost-
synchronous reductions may also be a good prioritization
strategy for finding bugs.



4. Conclusions
We have shown a sound and complete reduction for asyn-
chronous event-driven programs that can effectively control
the size of message buffers, leading to faster techniques to
both prove and find bugs in programs. Exploring almost-
synchronous interleavings that grow the buffers only when
they really need to grow seems to capture more interesting
interleavings as well as discover smaller adequate invariants.

References
[1] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie.

Zing: A model checker for concurrent software. In CAV, pages
484–487, 2004.

[2] D. Brand and P. Zafiropulo. On communicating finite-state
machines. J. ACM, 30(2):323–342, Apr. 1983. ISSN 0004-
5411.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999. ISBN
0-262-03270-8.

[4] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani,
and D. Zufferey. P: safe asynchronous event-driven program-
ming. In PLDI, pages 321–332, 2013.

[5] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded
scheduling. In POPL, pages 411–422, 2011.

[6] C. Flanagan and P. Godefroid. Dynamic partial-order reduction
for model checking software. POPL ’05, pages 110–121, New
York, NY, USA, 2005. ACM.

[7] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems - An Approach to the State-Explosion
Problem. PhD thesis, University of Liege, 1995.

[8] A. Udupa, A. Desai, and S. K. Rajamani. Depth bounded
explicit-state model checking. In SPIN, pages 57–74, 2011.


	Introduction
	Main Idea: Almost-Synchronous Reductions
	Evaluation
	Conclusions

