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Pranav Garg1, Christof Löding2, P. Madhusudan1, and Daniel Neider2

1 University of Illinois at Urbana-Champaign
2 RWTH Aachen University

Abstract. We propose a new automaton model, called quantified data
automata over words, that can model quantified invariants over linear
data structures, and build poly-time active learning algorithms for them,
where the learner is allowed to query the teacher with membership and
equivalence queries. In order to express invariants in decidable logics, we
invent a decidable subclass of QDAs, called elastic QDAs, and prove that
every QDA has a unique minimally-over-approximating elastic QDA. We
then give an application of these theoretically sound and efficient active
learning algorithms in a passive learning framework and show that we can
efficiently learn quantified linear data structure invariants from samples
obtained from dynamic runs for a large class of programs.

1 Introduction

Synthesizing invariants for programs is one of the most challenging problems in
verification today. In this paper, we are interested in using learning techniques
to synthesize quantified data-structure invariants.

In an active black-box learning framework, we look upon the invariant as a
set of configurations of the program, and allow the learner to query the teacher
for membership and equivalence queries on this set. Furthermore, we fix a par-
ticular representation class for these sets, and demand that the learner learn the
smallest (simplest) representation that describes the set. A learning algorithm
that learns in time polynomial in the size of the simplest representation of the
set is desirable. In passive black-box learning, the learner is given a sample of
examples and counter-examples of configurations, and is asked to synthesize the
simplest representation that includes the examples and excludes the counter-
examples. In general, several active learning algorithms that work in polynomial
time are known (e.g., learning regular languages represented as DFAs [1]) while
passive polynomial-time learning is rare (e.g., conjunctive Boolean formulas can
be learned but general Boolean formulas cannot be learned efficiently, automata
cannot be learned passively efficiently) [2].

In this paper, we build active learning algorithms for quantified logical formu-
las describing sets of linear data-structures. Our aim is to build algorithms that
can learn formulas of the kind “∀y1, . . . , yk ϕ”, where ϕ is quantifier-free, and
that captures properties of arrays and lists (the variables range over indices for
arrays, and locations for lists, and the formula can refer to the data stored at
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these positions and compare them using arithmetic, etc.). Furthermore, we show
that we can build learning algorithms that learn properties that are expressible
in known decidable logics. We then employ the active learning algorithm in a
passive learning setting where we show that by building an imprecise teacher
that answers the questions of the active learner, we can build effective invariant
generation algorithms that learn simply from a finite set of examples.

Active Learning of Quantified Properties Using QDAs: Our first tech-
nical contribution is a novel representation (normal form) for quantified prop-
erties of linear data-structures, called quantified data automata (QDA), and a
polynomial-time active learning algorithm for QDAs.

We model linear data-structures as data words, where each position is deco-
rated with a letter from a finite alphabet modeling the program’s pointer vari-
ables that point to that cell in the list or index variables that index into the cell of
the array, and with data modeling the data value stored in the cell, e.g., integers.
Quantified data automata (QDA) are a new model of automata over data words
that are powerful enough to express universally quantified properties of data
words. A QDA accepts a data word provided it accepts all possible annotations
of the data word with valuations of a (fixed) set of variables Y = {y1, . . . , yk}; for
each such annotation, the QDA reads the data word, records the data stored at
the positions pointed to by Y , and finally checks these data values against a data
formula determined by the final state reached. QDAs are very powerful in ex-
pressing typical invariants of programs manipulating lists and arrays, including
invariants of a wide variety of searching and sorting algorithms, maintenance of
lists and arrays using insertions/deletions, in-place manipulations that destruc-
tively update lists, etc.

We develop an efficient active learning algorithm for QDAs. By using a combi-
nation of abstraction over a set of data formulas and Angluin’s learning algorithm
for DFAs [1], we build a learning algorithm for QDAs. We first show that for any
set of valuation words (data words with valuations for the variables Y ), there is
a canonical QDA. Using this result, we show that learning valuation words can
be reduced to learning formula words (words with no data but paired with data
formulas), which in turn can be achieved using Angluin-style learning of Moore
machines. The number of queries the learner poses and the time it takes is bound
polynomially in the size of the canonical QDA that is learned. Intuitively, given
a set of pointers into linear data structures, there is an exponential number of
ways to permute the pointers into these and the universally quantified variables;
the learning algorithm allows us to search this space using only polynomial time
in terms of the actual permutations that figure in the set of data words learned.

Elastic QDAs and a Unique Minimal Over-Approximation Theorem:
The class of quantified properties that we learn in this paper (we can synthesize
them from QDAs) is very powerful. Consequently, even if they are learnt in an
invariant-learning application, we will be unable to verify automatically whether
the learnt properties are adequate invariants for the program at hand. Even
though SMT solvers support heuristics to deal with quantified theories (like e-
matching), in our experiments, the verification conditions could not be handled
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by such SMT solvers. The goal of this paper is hence to also offer mechanisms
to learn invariants that are amenable to decision procedures.

The second technical contribution of this paper is to identify a subclass of
QDAs (called elastic QDAs) and show two main results for them: (a) elastic
QDAs can be converted to formulas of decidable logics, to the array property
fragment when modeling arrays and the decidable Strand fragment when mod-
eling lists; (b) a surprising unique minimal over-approximation theorem that says
that for every QDA, accepting say a language L of valuation-words, there is a
minimal (with respect to inclusion) language of valuation-words L′ ⊇ L that is
accepted by an elastic QDA.

The latter result allows us to learn QDAs and then apply the unique minimal
over-approximation (which is effective) to compute the best over-approximation
of it that can be expressed by elastic QDAs (which then yields decidable verifi-
cation conditions). The result is proved by showing that there is a unique way to
minimally morph a QDA to one that satisfies the elasticity restrictions. For the
former, we identify a common property of the array property fragment and the
syntactic decidable fragment of Strand, called elasticity (following the general
terminology in the literature on Strand [3]). Intuitively, both the array prop-
erty fragment and Strand prohibit quantified cells to be tested to be bounded
distance away (the array property fragment does this by disallowing arithmetic
expressions over the quantified index variables [4] and the decidable fragment
of Strand disallows this by permitting only the use of →∗ or →+ in order to
compare quantified variables [3,5]). We finally identify a structural restriction of
QDAs that permits only elastic properties to be stated.

Passive Learning of Quantified Properties: The active learning algorithm
can itself be used in a verification framework, where the membership and equiv-
alence queries are answered using under-approximate and deductive techniques
(for instance, for iteratively increasing values of k, a teacher can answer mem-
bership questions based on bounded and reverse-bounded model-checking, and
answer equivalence queries by checking if the invariant is adequate using a con-
straint solver). In this paper, we do not pursue an implementation of active
learning as above, but instead build a passive learning algorithm that uses the
active learning algorithm.

Our motivation for doing passive learning is that we believe (and we val-
idate this belief using experiments) that in many problems, a lighter-weight
passive-learning algorithm which learns from a few randomly-chosen small data-
structures is sufficient to find the invariant. Note that passive learning algo-
rithms, in general, often boil down to a guess-and-check algorithm of some kind,
and often pay an exponential price in the property learned. Designing a passive
learning algorithm using an active learning core allows us to build more inter-
esting algorithms; in our algorithm, the inacurracy/guessing is confined to the
way the teacher answers the learner’s questions.

The passive learning algorithm works as follows. Assume that we have a finite
set of configurations S, obtained from sampling the program (by perhaps just
running the program on various random small inputs). We are required to learn
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the simplest representation that captures the set S (in the form of a QDA).
We now use an active learning algorithm for QDAs; membership questions are
answered with respect to the set S (note that this is imprecise, as an invariant I
must include S but need not be precisely S). When asked an equivalence query
with a set I, we check whether S ⊆ I; if yes, we can check if the invariant is
adequate using a constraint solver and the program.

It turns out that this is a good way to build a passive learning algorithm. First,
enumerating random small data-structures that get manifest at the header of a
loop fixes for the most part the structure of the invariant, since the invariant is
forced to be expressed as a QDA. Second, our active learning algorithm for QDAs
promises never to ask long membership queries (queried words are guaranteed to
be less than the diameter of the automaton), and often the teacher has the correct
answers. Finally, note that the passive learning algorithm answers membership
queries with respect to S; this is because we do not know the true invariant, and
hence err on the side of keeping the invariant semantically small. This inaccuracy
is common in most learning algorithms employed for verification (e.g, Boolean
learning [6], compositional verification [7,8], etc). This inaccuracy could lead to
a non-optimal QDA being learnt, and is precisely why our algorithm need not
work in time polynomial in the simplest representation of the concept (though
it is polynomial in the invariant it finally learns).

The proof of the efficacy of the passive learning algorithm rests in the ex-
perimental evaluation. We implement the passive learning algorithm (which in
turn requires an implementation of the active learning algorithm). By building
a teacher using dynamic test runs of the program and by pitting this teacher
against the learner, we learn invariant QDAs, and then over-approximate them
using elastic QDAs (EQDAs). These EQDAs are then transformed into formu-
las over decidable theories of arrays and lists. Using a wide variety of programs
manipulating arrays and lists, ranging from several examples in the literature
involving sorting algorithms, partitioning, merging lists, reversing lists, and pro-
grams from the Glib list library, programs from the Linux kernel, a device driver,
and programs from a verified-for-security mobile application platform, we show
that we can effectively learn adequate quantified invariants in these settings. In
fact, since our technique is a black-box technique, we show that it can be used
to infer pre-conditions/post-conditions for methods as well.

Related Work: For invariants expressing properties on the dynamic heap, shape
analysis techniques are the most well known [9], where locations are classi-
fied/merged using unary predicates (some dictated by the program and some
given as instrumentation predicates by the user), and abstractions summarize
all nodes with the same predicates into a single node. The data automata that
we build also express an infinite set of linear data structures, but do so using
automata, and further allow n-ary quantified relations between data elements.
In recent work, [10] describes an abstract domain for analyzing list manipu-
lating programs, that can capture quantified properties about the structure
and the data stored in lists. This domain can be instantiated with any nu-
merical domain for the data constraints and a set of user-provided patterns for
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capturing the structural constraints. However, providing these patterns for quan-
tified invariants is in general a difficult task.

In recent years, techniques based on Craig’s interpolation [11] have emerged
as a new method for invariant synthesis. Interpolation techniques, which are
inherently white-box, are known for several theories, including linear arith-
metic, uninterpreted function theories, and even quantified properties over arrays
and lists [12,13,14,15]. These methods use different heuristics like term abstrac-
tion [14], preferring smaller constants [12,13] and use of existential ghost vari-
ables [15] to ensure that the interpolant converges on an invariant from a finite
set of spurious counter-examples. IC3 [16] is another white-box technique for
generalizing inductive invariants from a set of counter-examples.

A primary difference in our work, compared to all the work above, is that
ours is a black-box technique that does not look at the code of the program, but
synthesizes an invariant from a snapshot of examples and counter-examples that
characterize the invariant. The black-box approach to constructing invariants
has both advantages and disadvantages. The main disadvantage is that infor-
mation regarding what the program actually does is lost in invariant synthesis.
However, this is the basis for its advantage as well—by not looking at the code,
the learning algorithm promises to learn the sets with the simplest representa-
tions in polynomial time, and can also be much more flexible. For instance, even
when the code of the program is complex, for example having non-linear arith-
metic or complex heap manipulations that preclude logical reasoning, black-box
learning gives ways to learn simple invariants for them.

There are several black-box learning algorithms that have been explored in
verification. Boolean formula learning has been investigated for finding quantifier-
free program invariants [17], and also extended to quantified invariants [6]. How-
ever, unlike us, [6] learns a quantified formula given a set of data predicates as
well as the predicates which can appear in the guards of the quantified formula.
Recently, machine learning techniques have also been explored [18]. Variants of
the Houdini algorithm [19] essentially use conjunctive Boolean learning (which
can be achieved in polynomial time) to learn conjunctive invariants over tem-
plates of atomic formulas (see also [20]). The most mature work in this area is
Daikon [21], which learns formulas over a template, by enumerating all formulas
and checking which ones satisfy the samples, and where scalability is achieved
in practice using several heuristics that reduce the enumeration space which
is doubly-exponential. For quantified invariants over data-structures, however,
such heuristics aren’t very effective, and Daikon often restricts learning only to
formulas of very restricted syntax, like formulas with a single atomic guard, etc.
In our experiments Daikon was, for instance, not able to learn an adequate loop
invariant for the selection sort algorithm.

2 Overview

List and Array Invariants: Consider a typical invariant in a sorting program
over lists where the loop invariant is expressed as:
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head →∗ i ∧ ∀y1, y2.((head →∗ y1∧succ(y1, y2)∧y2 →∗ i) ⇒ d(y1) ≤ d(y2)) (1)

This says that for all cells y1 that occur somewhere in the list pointed to by
head and where y2 is the successor of y1, and where y1 and y2 are before the
cell pointed to by a scalar pointer variable i, the data value stored at y1 is no
larger than the data value stored at y2. This formula is not in the decidable
fragment of Strand [3,5] since the universally quantified variables are involved
in a non-elastic relation succ (in the subformula succ(y1, y2)). Such an invariant
for a program manipulating arrays can be expressed as:

∀y1, y2.((0 ≤ y1 ∧ y2 = y1 + 1 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]) (2)

Note that the above formula is not in the decidable array property fragment [4].

Quantified Data Automata: The key idea in this paper is an automaton
model for expressing such constraints called quantified data automata (QDA).
The above two invariants are expressed by the following QDA:

q0 q1 q2 q3 q4

q5

d(y1)≤d(y2)

true

(head,−)

({head,i},∗),(head,y2)

(head,y1)

(b,y1)

(i,∗),(b,y2)
b

(b,y2)

b, (i,−)

(i,y2)

(i,−)

b b

∗

The above automaton reads (deterministically) data words whose labels de-
note the positions pointed to by the scalar pointer variables head and i, as well as
valuations of the quantified variables y1 and y2. We use two blank symbols that
indicate that no pointer variable (“b”) or no variable from Y (“−”) is read in the
corresponding component; moreover, b = (b,−). Missing transitions go to a sink
state labeled false. The above automaton accepts a data word w with a valuation
v for the universally quantified variables y1 and y2 as follows: it stores the value
of the data at y1 and y2 in two registers, and then checks whether the formula
annotating the final state it reaches holds for these data values. The automaton
accepts the data word w if for all possible valuations of y1 and y2, the au-
tomaton accepts the corresponding word with valuation. The above automaton
hence accepts precisely those set of data words that satisfy the invariant formula.

Decidable Fragments and Elastic Quantified Data Automata: The empti-
ness problem for QDAs is undecidable; in other words, the logical formulas that
QDAs express fall into undecidable theories of lists and arrays. A common restric-
tion in the array property fragment as well as the syntactic decidable fragments
of Strand is that quantification is not permitted to be over elements that are
only a bounded distance away. The restriction allows quantified variables to only
be related through elastic relations (following the terminology in Strand [3,5]).

For instance, a formula equivalent to the formula in Eq. 1 but expressed in
the decidable fragment of Strand over lists is:
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head →∗ i ∧ ∀y1, y2.((head →∗ y1∧y1 →∗ y2∧y2 →∗ i) ⇒ d(y1) ≤ d(y2)) (3)

This formula compares data at y1 and y2 whenever y2 occurs sometime after
y1, and this makes the formula fall in a decidable class. Similarly, a formula
equivalent to the formula Eq. 2 in the decidable array property fragment is:

∀y1, y2.((0 ≤ y1 ∧ y1 ≤ y2 ∧ y2 ≤ i) ⇒ A[y1] ≤ A[y2]) (4)

The above two formulas are captured by a QDA that is the same as in the figure
above, except that the b-transition from q2 to q5 is replaced by a b-loop on q2.

We identify a restricted form of quantified data automata, called elastic quan-
tified data automata (EQDA) in Section 5, which structurally captures the con-
straint that quantified variables can be related only using elastic relations (like
→∗ and ≤). Furthermore, we show in Section 6 that EQDAs can be converted to
formulas in the decidable fragment of Strand and the array property fragment,
and hence expresses invariants that are amenable to decidable analysis across
loop bodies.

It is important to note that QDAs are not necessarily a blown-up version of
the formulas they correspond to. For a formula, the corresponding QDA can be
exponential, but for a QDA the corresponding formula can be exponential as well
(QDAs are like BDDs, where there is sharing of common suffixes of constraints,
which is absent in a formula).

3 Quantified Data Automata

We model lists (and finite sets of lists) and arrays that contain data over some
data domain D as finite words, called data words, encoding the pointer variables
and the data values. Consider a finite set of pointer variables PV = {p1, . . . , pr}
and let Σ = 2PV . The empty set corresponds to a blank symbol indicating that
no pointer variable occurs at this position. We also denote this blank symbol by
the letter b. A data word over PV and the data domain D is an element w of
(Σ×D)∗, such that every p ∈ PV occurs exactly once in the word (i.e., for each
p ∈ PV , there is precisely one j such that w[j] = (X, d), with p ∈ X).

Let us fix a set of variables Y . The automata we build accept a data word if for
all possible valuations of Y over the positions of the data word, the data stored at
these positions satisfy certain properties. For this purpose, the automaton reads
data words extended by valuations of the variables in Y , called valuation words.
The variables are then quantified universally in the semantics of the automaton
model (as explained later in this section).

A valuation word is a word v ∈ (Σ × (Y ∪ {−})×D)∗, where v projected to
the first and third components forms a data word and where each y ∈ Y occurs
in the second component of a letter precisely once in the word. The symbol
‘−’ is used for the positions at which no variable from Y occurs. A valuation
word hence defines a data word along with a valuation of Y . The data word
corresponding to such a word v is the word in (Σ ×D)∗ obtained by projecting
it to its first and third components. Note that the choice of the alphabet enforces
the variables from Y to be in different positions.
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To express the properties on the data, we fix a set of constants, functions
and relations over D. We assume that the quantifier-free first-order theory over
this domain is decidable. We encourage the reader to keep in mind the theory
of integers with constants (0, 1, etc.), addition, and the usual relations (≤, <,
etc.) as a standard example of such a domain.

Quantified data automata use a finite set F of formulas over the atoms
d(y1), . . . , d(yn) that is additionally equipped with a (semi-)lattice structure of
the form F : (F,�,�, false, true) where � is the partial-order relation, � is the
least-upper bound, and false and true are formulas required to be in F and cor-
respond to the bottom and top elements of the lattice. Furthermore, we assume
that whenever α � β, then α ⇒ β. Also, we assume that each pair of formulas
in the lattice are inequivalent.

One example of such a formula lattice over the data domain of integers can be
obtained by taking a set of representatives of all possible inequivalent Boolean
formulas over the atomic formulas involving no constants, defining α � β iff
α ⇒ β, and taking the least-upper bound of two formulas as the disjunction
of them. Such a lattice would be of size doubly exponential in the number of
variables n, and consequently, in practice, we may want to use a different coarser
lattice, such as the Cartesian formula lattice. The Cartesian formula lattice is
formed over a set of atomic formulas and consists of conjunctions of literals
(atoms or negations of atoms). The least-upper bound of two formulas is taken
as the conjunction of those literals that occur in both formulas. For the ordering
we define α � β if all literals appearing in β also appear in α. The size of a
Cartesian lattice is exponential in the number of literals.

We are now ready to introduce the automaton model. A quantified data au-
tomaton (QDA) over a set of program variables PV , a data domain D, a set
of universally quantified variables Y , and a formula lattice F is of the form
A = (Q, q0, Π, δ, f) where Q is a finite set of states, q0 ∈ Q is the initial state,
Π = Σ× (Y ∪{−}), δ : Q×Π → Q is the transition function, and f : Q → F is
a final-evaluation function that maps each state to a data formula. The alpha-
bet Π used in a QDA does not contain data. Words over Π are referred to as
symbolic words because they do not contain concrete data values. The symbol
(b,−) indicating that a position does not contain any variable is denoted by b.

Intuitively, a QDA is a register automaton that reads the data word extended
by a valuation that has a register for each y ∈ Y , which stores the data stored
at the positions evaluated for Y , and checks whether the formula decorating the
final state reached holds for these registers. It accepts a data word w ∈ (Σ×D)∗

if it accepts all possible valuation words v extending w with a valuation over Y .
We formalize this below. A configuration of a QDA is a pair of the form

(q, r) where q ∈ Q and r : Y → D is a partial variable assignment. The initial
configuration is (q0, r0) where the domain of r0 is empty. For any configuration
(q, r), any letter a ∈ Σ, data value d ∈ D, and variable y ∈ Y we define
δ′((q, r), (a, y, d)) = (q′, r′) provided δ(q, (a, y)) = q′ and r′(y′) = r(y′) for each
y′ = y and r′(y) = d, and we let δ′((q, r), (a,−, d)) = (q′, r) if δ(q, (a,−)) = q′.
We extend this function δ′ to valuation words in the natural way.
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A valuation word v is accepted by the QDA if δ′((q0, r0), v) = (q, r) where
(q0, r0) is the initial configuration and r |= f(q), i.e., the data stored in the
registers in the final configuration satisfy the formula annotating the final state
reached. We denote the set of valuation words accepted by A as Lv(A). We
assume that a QDA verifies whether its input satisfies the constraints on the
number of occurrences of variables from PV and Y , and that all inputs violating
these constraints either do not admit a run (because of missing transitions) or
are mapped to a state with final formula false.

A data word w is accepted by the QDA if every valuation word v that has w
as the corresponding data word is accepted by the QDA. The language L(A) of
the QDA A is the set of data words accepted by it.

4 Learning Quantified Data Automata

Our goal in this section is to synthesize QDAs using existing learning algorithms
such as Angluin’s algorithm [1], which was developed to infer the canonical
deterministic automaton for a regular language. We achieve this by relating
QDAs to the classical model of Moore machines (an automaton with output
on states). Recall that QDAs define two kinds of languages, a language of data
words and a language of valuation words. On the level of valuation words, we
can view a QDA as a device mapping a symbolic word to a data formula as
formalized below.

A formula word over PV , F , and Y is an element of (Π∗ × F) where, as
before, Π = Σ × (Y ∪ {−}) and each p ∈ PV and y ∈ Y occurs exactly once
in the word. Note that a formula word does not contain elements of the data
domain—it simply consists of the symbolic word that depicts the pointers into
the list (modeled using Σ) and a valuation for the quantified variables in Y
(modeled using the second component) as well as a formula over the lattice F .
For example,

(
({h}, y1)(b,−)(b, y2)({t},−), d(y1) ≤ d(y2)

)
is a formula word,

where h points to the first element, t to the last element, y1 points to the first
element, and y2 to the third element; and the data formula is d(y1) ≤ d(y2).

By using formula words we explicitly take the view of a QDA as a Moore
machine that reads symbolic words and outputs data formulas. A formula word
(u, α) is accepted by a QDA A if A reaches the state q after reading u and
f(q) = α. Hence, a QDA defines a unique language of formula words. One easily
observes that two QDAs A and A′ (over the same lattice of formulas) that accept
the same set of valuation words also define the same set of formula words [22]
(assuming that all the formulas in the lattice are pairwise non-equivalent).

Thus, a language of valuation words can be seen as a function that assigns to
each symbolic word a uniquely determined formula, and a QDA can be viewed
as a Moore machine that computes this function. For each such Moore machine
there exists a unique minimal one that computes the same function, hence we
obtain the following theorem.

Theorem 1. For each QDA A there is a unique minimal QDA A′ that accepts
the same set of valuation words.
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Angluin [1] introduced a popular learning framework in which a learner learns a
regular language L, the so-called target language, over an a priory fixed alphabet
Σ by actively querying a teacher which is capable of answering membership
and equivalence queries. Angluin’s algorithm learns a regular language in time
polynomial in the size of the (unique) minimal deterministic finite automaton
accepting the target language and the length of the longest counterexample
returned by the teacher.

This algorithm can be easily lifted to the learning of Moore machines. Mem-
bership queries now ask for the output or classification of a word. On an equiv-
alence query, the teacher says “yes” or returns a counter-example w such that
the output of the conjecture on w is different from the output on w in the target
language. Viewing QDAs as Moore machines, we can apply Angluin’s algorithm
directly in order to learn a QDA, and obtain the following theorem.

Theorem 2. Given a teacher for a QDA-acceptable language of formula words
that can answer membership and equivalence queries, the unique minimal QDA
for this language can be learned in time polynomial in this minimal QDA and
the length of the longest counterexample returned by the teacher.

5 Unique Over-approximation Using Elastic QDAs

Our aim is to translate the QDAs that are synthesized into decidable logics such
as the decidable fragment of Strand or the array property fragment. A property
shared by both logics is that they cannot test whether two universally quantified
variables are bounded distance away. We capture this type of constraint by the
subclass of elastic QDAs (EQDAs) that have been already informally described
in Section 2. Formally, a QDA A is called elastic if each transition on b is a self
loop, that is, whenever δ(q, b) = q′ is defined, then q = q′.

The learning algorithm that we use to synthesize QDAs does not construct
EQDAs in general. However, we can show that every QDA A can be uniquely
over-approximated by a language of valuation words that can be accepted by
an EQDA Ael. We will refer to this construction, which we outline below, as
elastification. This construction crucially relies on the particular structure that
elastic automata have, which forces a unique set of words to be added to the
language in order to make it elastic.

Let A = (Q, q0, Π, δ, f) be a QDA and for a state q let Rb(q) := {q′ | q b−→
∗

q′} be the set of states reachable from q by a (possibly empty) sequence of
b-transitions. For a set S ⊆ Q we let Rb(S) :=

⋃
q∈S Rb(q).

The set of states of Ael consists of sets of states of A that are reachable from
the initial state Rb(q0) of Ael by the following transition function (where δ(S, a)
denotes the standard extension of the transition function of A to sets of states):

δel(S, a) =

⎧
⎪⎨

⎪⎩

Rb(δ(S, a)) if a = b

S if a = b and δ(q, b) is defined for some q ∈ S

undefined otherwise.
Note that this construction is similar to the usual powerset construction except
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that in each step we take the b-closure after applying the transition function of
A. If the input letter is b, Ael loops on the current set if a b-transition is defined
for some state in the set.

The final evaluation formula for a set is the least upper bound of the formulas
for the states in the set: fel(S) =

⊔
q∈S f(q). We can now show that Lv(Ael) is

the most precise elastic over-approximation of Lv(A).

Theorem 3. For every QDA A, the EQDA Ael satisfies Lv(A) ⊆ Lv(Ael), and
for every EQDA B such that Lv(A) ⊆ Lv(B), Lv(Ael) ⊆ Lv(B) holds.

Proof: Note that Ael is elastic by definition of δel. It is also clear that Lv(A) ⊆
Lv(Ael) because for each run of A using states q0 · · · qn the run of Ael on the
same input uses sets S0 · · ·Sn such that qi ∈ Si, and by definition f(qn) implies
fel(Sn).

Now let B be an EQDA with Lv(A) ⊆ Lv(B). Let w = (a1, d1) · · · (an, dn) ∈
Lv(Ael) and let S be the state of Ael reached on w. We want to show that
w ∈ Lv(B). Let p be the state reached in B on w. We show that f(q) implies
fB(p) for each q ∈ S. From this we obtain fel(S) ⇒ fB(p) because fel(S) is the
least formula that is implied by all the f(q), for q ∈ S.

Pick some state q ∈ S. By definition of δel we can construct a valuation word
w′ ∈ Lv(A) that leads to the state q in A and has the following property: if all
letters of the form (b, d) are removed from w and from w′, then the two remaining
words have the same symbolic words. In other words, w and w′ can be obtained
from each other by inserting and/or removing b-letters.

Since B is elastic, w′ also leads to p in B. From this we can conclude that
f(q) ⇒ fB(p) because otherwise there would be a model of f(q) that is not
a model of fB(p) and by changing the data values in w′ accordingly we could
produce an input that is accepted by A and not by B. ��

6 Linear Data-Structures to Words and EQDAs to Logics

In this section, we sketch briefly how to model arrays and lists as data words,
and how to convert EQDAs to quantified logical formulas in decidable logics.

Modeling Lists and Arrays as Data Words: We model a linear data struc-
ture as a word over (Σ ×D) where Σ = 2PV , PV is the set of pointer variables
and D is the data domain; scalar variables in the program are modeled as single
element lists. The encoding introduces a special pointer variable nil which is al-
ways read together with all other null-pointers in the configuration. For arrays,
the encoding introduces variables le zero and geq size which are read together
with all those index variables which are less than zero or which exceed the size of
the respective array. Given a configuration, the corresponding data words read
the scalar variables and the linear data structures one after the other, in some
pre-determined order. In programs like copying one array to another, where both
the arrays are read synchronously, the encoding models multiple data structures
as a single structure over an extended data domain.
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From EQDAs to STRAND and Array Property Fragment (APF): Now
we briefly sketch the translation from an EQDA A to an equivalent formula
T (A) in Strand or the APF such that the set of data words accepted by A
corresponds to the program configurations C which model T (A).

Given an EQDA A, the translation enumerates all simple paths in the au-
tomaton to an output state. For each such path p from the initial state to an
output state qp, the translation records the relative positions of the pointer and
universal variables as a structural constraint φp, and the formula fA(qp) re-
lating the data value at these positions. Each path thus leads to a universally
quantified implication of the form ∀Y. φp ⇒ fA(qp). All valuation words not
accepted by the EQDA semantically go to the formula false, hence an additional
conjunct ∀Y. ¬(

∨
p φp) ⇒ false is added to the formula. So the final formula is

T (A) =
(∧

p ∀Y. φp ⇒ fA(qp)
)

∧
(
∀Y. ¬(

∨
p φp) ⇒ false

)
.

q0 q2 q8 q18 q26
({cur,nil},−) (h,−) (b, y1)

b

(b, y2)

b b

ϕ := d(y1) ≤ d(y2)∧
d(y1) < k ∧ d(y2) < k

Fig. 1. A path in the automaton expressing the invariant of the program which finds
a key k in a sorted list.The full automaton is presented in [22].

We next explain, through an example, the construction of the structural con-
straints φp (for details see [22]). Consider program list-sorted-find which searches
for a key in a sorted list. The EQDA corresponding to the loop invariant learned
for this program is presented in [22]. One of the simple paths in the automaton
(along with the associated self-loops on b) is shown in Fig 1. The structural con-
straint φp intuitively captures all valuation words which are accepted by the au-
tomaton along p; for the path in the figure φp is (cur = nil∧h →+ y1∧y1 →+ y2)
and the formula ∀y1y2. (cur = nil ∧ h →+ y1 ∧ y1 →+ y2) ⇒ (d(y1) ≤
d(y2) ∧ d(y1) < k ∧ d(y2) < k) is the corresponding conjunct in the learned
invariant. Applying this construction yields the following theorem.

Theorem 4. Let A be an EQDA, w a data word, and c the program configura-
tion corresponding to w. If w ∈ L(A), then c |= T (A). Additionally, if T (A) is
a Strand formula, then the implication also holds in the opposite direction.

APF allows the universal variables to be related by ≤ or = and not <. Hence,
along paths where y1 < y2, we over-approximate the structural constraint φp

to y1 ≤ y2 and, subsequently, the data formula fA(qp) is abstracted to include
d(y1) = d(y2). This leads to an abstraction of the actual semantics of the EQDA
and is the reason Theorem 4 only holds in one direction for the APF.

7 Implementation and Evaluation on Learning Invariants

We apply the active learning algorithm for QDAs, described in Section 4, in a
passive learning framework in order to learn quantified invariants over lists and
arrays from a finite set of samples S obtained from dynamic test runs.
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Implementing the Teacher: In an active learning algorithm, the learner can
query the teacher for membership and equivalence queries. In order to build a
passive learning algorithm from a sample S, we build a teacher, who will use S
to answer the questions of the learner, ensuring that the learned set contains S.

The teacher knows S and wants the learner to construct a small automaton
that includes S; however, the teacher does not have a particular language of
data words in mind, and hence cannot answer questions precisely. We build a
teacher who answers queries as follows: On a membership query for a word w,
the teacher checks whether w belongs to S and returns the corresponding data
formula. The teacher has no knowledge about the membership for words which
were not realized in test runs, and she rejects these. She also does not know
whether the formula she computes on words that get manifest can be weaker;
but she insists on that formula. By doing these, the teacher errs on the side of
keeping the invariant semantically small. On an equivalence query, the teacher
just checks that the set of samples S is contained in the conjectured invariant. If
not, the teacher returns a counter-example from S. Note that the passive learning
algorithm hence guarantees that the automaton learned will be a superset of S
and will take polynomial time in the learnt automaton. We show the efficacy of
this passive learning algorithm using experimental evidence.

Implementation of a Passive Learner of Invariants: We first take a pro-
gram and using a test suite, extract the set of concrete data-structures that get
manifest at loop-headers (for learning loop invariants) and at the beginning/end
of functions (for learning pre/post conditions). The test suite was generated
by enumerating all possible arrays/lists of a small bounded length, and with
data-values from a small bounded domain. We then convert the data-structures
into a set of formula words, as described below, to get the set S on which we
perform passive learning. We first fix the formula lattice F over data formulas
to be the Cartesian lattice of atomic formulas over relations {=, <,≤}. This is
sufficient to capture the invariants of many interesting programs such as sorting
routines, searching a list, in-place reversal of sorted lists, etc. Using lattice F , for
every program configuration which was realized in some test run, we generate
a formula word for every valuation of the universal variables over the program
structures. We represent these formula words as a mapping from the symbolic
word, encoding the structure, to a data formula in the lattice F . If different
inputs realize the same structure but with different data formulas, we associate
the symbolic word with the join of the two formulas.

Implementing the Learner: We used the libALF library [23] as an imple-
mentation of the active learning algorithm [1]. We adapted its implementation
to our setting by modeling QDAs as Moore machines. If the learned QDA is
not elastic, we elastify it as described in Section 5. The result is then converted
to a quantified formula over Strand or the APF and we check if the learned
invariant was adequate using a constraint solver.



826 P. Garg et al.

Table 1. Results of our experiments

Example LOC #Test Tteacher #Eq. #Mem. Size Elastification Tlearn

inputs (s) #states required ? (s)

array-find 25 310 0.05 2 121 8 no 0.00
array-copy 25 7380 1.75 2 146 10 no 0.00
array-compare 25 7380 0.51 2 146 10 no 0.00
insertion-sort-outer 30 363 0.19 3 305 11 no 0.00
insertion-sort-innner 30 363 0.30 7 2893 23 yes 0.01
selection-sort-outer 40 363 0.18 3 306 11 no 0.01
selection-sort-inner 40 363 0.55 9 6638 40 yes 0.05

list-sorted-find 20 111 0.04 6 1683 15 yes 0.01
list-sorted-insert 30 111 0.04 3 1096 20 no 0.01
list-init 20 310 0.07 5 879 10 yes 0.01
list-max 25 363 0.08 7 1608 14 yes 0.00
list-sorted-merge 60 5004 10.50 7 5775 42 no 0.06
list-partition 70 16395 11.40 10 11807 38 yes 0.11
list-sorted-reverse 25 27 0.02 2 439 18 no 0.00
list-bubble-sort 40 363 0.19 3 447 12 no 0.01
list-fold-split 35 1815 0.21 2 287 14 no 0.00
list-quick-sort 100 363 0.03 1 37 5 no 0.00
list-init-complex 80 363 0.05 1 57 6 no 0.01

lookup prev 25 111 0.04 3 1096 20 no 0.01
add cachepage 40 716 0.19 2 500 14 no 0.01
Glib sort (merge) 55 363 0.04 1 37 5 no 0.00
Glib insert sorted 50 111 0.04 2 530 15 no 0.01
devres 25 372 0.06 2 121 8 no 0.00
rm pkey 30 372 0.06 2 121 8 no 0.00
GNU Coreutils sort 2500 1 File 0.00 17 4996 5 yes 0.07

Learning Function Pre-conditions

list-sorted-find 20 111 0.01 1 37 5 no 0.00
list-init 20 310 0.02 1 26 4 no 0.00
list-sorted-merge 60 329 0.06 3 683 19 no 0.01

Experimental Results:1 We evaluate our approach on a suite of programs (see
Table 1) for learning invariants and preconditions. For every program, we report
the number of lines of C code, the number of test inputs and the time (Tteacher)
taken to build the teacher from the samples collected along these test runs. We
also report the number of equivalence and membership queries answered by the
teacher in the active learning algorithm, the size of the final elastic automata,
whether the learned QDA required any elastification and finally, the time (Tlearn)
taken to learn the QDA.

1 More details at http://web.engr.illinois.edu/~garg11/learning_qda.html

http://web.engr.illinois.edu/~garg11/learning_qda.html
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The names of the programs in Table 1 are self-descriptive and we only describe
some of them. The inner and outer suffix in insertion and selection sort corre-
sponds to learning loop-invariants for the inner and outer loops in those sorting
algorithms. The program list-init-complex sorts an input array using heap-sort
and then initializes a list with the contents of this sorted array. Since heap-sort
is a complex algorithm that views an array as a binary tree, none of the current
automatic white-box techniques for invariant synthesis can handle such complex
programs. However, our learning approach being black-box, we are able to learn
the correct invariant, which is that the list is sorted. Similarly, synthesizing post-
condition annotations for recursive procedures like merge-sort and quick-sort is
in general difficult for white-box techniques, like interpolation, which require a
post-condition. In fact, SAFARI [14], which is based on interpolation, cannot
handle list-structures, and also cannot handle array-based programs with quan-
tified preconditions which precludes verifying the array variants of programs like
sorted-find, sorted-insert, etc., which we can handle.

The methods lookup prev and add cachepage are from the module cacheP-
age in a verified-for-security platform for mobile applications [24]. The module
cachePage maintains a cache of the recently used disc pages as a priority queue
based on a sorted list. The method sort is a merge sort implementation and
insert sorted is a method for insertion into a sorted list. Both these methods
are from Glib which is a low-level C library that forms the basis of the GTK+
toolkit and the GNOME environment. The methods devres and rm pkey are
methods adapted from the Linux kernel and an Infiniband device driver, both
mentioned in [6]. Finally, we learn the sortedness property (with respect to the
method compare that compares two lines) of the method sortlines which lies at
the heart of the GNU core utility to sort a file. The time taken by our tech-
nique to learn an invariant, being black-box, largely depends on the complexity
of the property and not the size of the code, as is evident from the successful
application of our technique to this large program.

All experiments were completed on an Intel Core i5 CPU at 2.4GHz with 6GB
of RAM. For all examples, our prototype implementation learns an adequate in-
variant really fast. Though the learned QDA might not be the smallest automa-
ton representing the samples S (because of the inaccuracies of the teacher), in
practice we find that they are reasonably small (fewer than 50 states). Moreover,
we verified that the learned invariants were adequate for proving the programs
correct by generating verification conditions and validating them using an SMT
solver (these verified in less than 1s). It is possible that SMT solvers can some-
times even handle non-elastic invariants and VCs; however, in our experiments, it
was not able to handle such formulas without giving extra triggers, thus suggest-
ing the necessity of the elastification of QDAs. Learnt invariants are complex in
some programs; for example the invariant QDA for the program list-sorted-find
is presented in [22] and corresponds to:

head �= nil ∧ (∀y1y2.head →∗ y1 →∗ y2 ⇒ d(y1) ≤ d(y2)) ∧ ((cur = nil ∧ ∀y1.head →∗

y1 ⇒ d(y1) < k) ∨ (head →∗ cur ∧ ∀y1.head →∗ y1 →+ cur ⇒ d(y1) < k)).
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Future Work:We believe that learning of structural conditions of data-structure
invariants using automata is an effective technique, especially for quantified prop-
erties where passive or machine-learning techniques are not currently known.
However, for the data-formulas themselves, machine learning can be very ef-
fective [18], and we would like to explore combining automata-based structural
learning (for words and trees) with machine-learning for data-formulas.

Acknowledgements. We would like to thank Xiaokang Qiu for valuable dis-
cussions on the automata model for Strand formulas. This work is partially
supported by NSF CAREER award #0747041.
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